Proceedings of the XXXI Annual Review meeting of All India Coordinated Research Project on Biological Control of Crop Pests

Organized by ICAR - National Bureau of Agricultural Insect Resources, Bengaluru

(October 20 - 21, 2022)

AICRP on Biological Control of Crop Pests NATIONAL BUREAU OF AGRICULTURAL INSECT RESOURCES P. B. No. 2491, H. A. Farm Post, Bengaluru 560024 Karnataka

XXXI ANNUAL REVIEW MEETING OF ALL INDIA CO-ORDINATED RESEARCH PROJECT ON BIOLOGICAL CONTROL OF CROP PESTS

PROCEEDINGS OF THE TECHNICIAL SESSIONS OF THE XXXI ANNUAL REVIEW MEETING OF AICRP-BC (October 20 – 21, 2022)

The ICAR-National Bureau of Agricultural Insect Resources, Bengaluru organized the XXXI Annual Review Meeting of All India Coordinated Research Project on Biological Control of Crop Pests.

Inaugural Session

Dr S N Sushil, Director, ICAR-NBAIR, Bengaluru & Project Coordinator, AICRP on Biological control of Crop Pests welcomed the dignitaries and participants. He briefly presented the highlights of the project for the period 2021-22, which included the development, validation and commercialisation of promising bioagents under the project and area covered through the adoption of biocontrol modules. He also presented the monitoring and management of the recent invasive pests and preparedness to tackle the invasive attacks

Deputy Director General (Crop Science), Dr. Tilak Raj Sharma, ICAR, New Delhi inaugurated the workshop and appreciated the progress made in the project. He emphasized the scope of biological control in the natural farming. He stressed upon the need of concentrating the basic studies on the biological control with special emphasis on rhizosphere biology and the interaction between the rhizosphere and biocontrol agents. He urged to strengthen the public private partnership to test, validate, mass produce and register the potential biocontrol products. He highlighted the importance of generating molecular signatures for the promising bioagents and depositing the same in recognised nodal centres. He also opined a good biocontrol product should have quality, scalability, applicability and traceability. He mentioned that Artificial intelligence (AI) and Internet of Things (IOT) need to be studied and explored to develop innovative ways of application and monitoring of biocontrol agents. More concentration has to be given to develop climate resilient biocontrol agents like temperature tolerant, drought tolerant etc.

Registrar, University of Agricultural Sciences, Bengaluru, Dr Basave Gowda mentioned about the integration of biocontrol in natural farming to avoid the usage of chemicals and insecticides. He also spoke on doubling farmer's income involving quality biocontrol agents.

Dr S C Dubey, Assistant Director General (Plant Protection & Biosafety) shared his knowledge and experiences on registration of microbial biopesticide products. He stressed

upon the need of stringent and scientific proven procedures for survey and surveillance of crop pests and their natural enemies. Standard formulation technologies should be followed by all the centres while developing a product against a crop pest or disease. Basic research on mode of action, competence, virulence and colonization of biocontrol agents should also be focussed along with the field evaluation. He emphasized to develop measures to conserve the natural enemies of crop pests and diseases for better utilization. He also pointed out AICRP on Biological Control should involve other plant protection institutes like ICAR-NCIPM for conducting large scale demonstrations.

Programme Advisory and Monitoring Committee members, Dr. H. C. Sharma, Dr. H. B. Singh and former directors of ICAR-NBAIR Dr. N. K. Krishnakumar, Dr. Abraham Verghese, Dr. Chandish R. Ballal, Dr. N. Bakthavatsalam and senior retired biocontrol workers Dr. T. M. Manjunath, Dr. M. Mani actively participated in the review meeting. Around100 scientists and ten company representatives from different parts of the country participated in the XXXI AICRP on Biological Control Annual Review Meeting. Dr G Sivakumar, Principal Scientist & In charge, AICRP - BC, PC cell proposed the vote of thanks.

Recommendation and Conclusions of Technical sessions:

SESSION I: Panel discussion for collaboration between institutes and AICRPs

Chairman	:	Dr. T.R. Sharma, DDG (CS)
Co-Chairman	:	Dr. S. C. Dubey, ADG (PP& BS)
		Dr. S.N. Sushil, Director, ICAR-NBAIR, Bengaluru
Rapporteurs	:	Dr. A. Kandan, ICAR-NBAIR, Bengaluru
		Dr.Omprakash Navik, ICAR-NBAIR, Bengaluru

Suggestions / Recommendations

- ICAR-NIBSM proposed to collaborate with ICAR-NBAIR for barcoding and identification of Thrips spp., evaluation of nano formulations of insect pheromone and multilocation testing of NIBSM *Bacillus thuringiensis* product.
- ICAR-NBAIM, Mau agreed for microbial charectarization and deposition in its repository.
- ICAR-NCIPM, New Delhi agreed to collaborate with ICAR-NBAIR for large scale field demonstration of macrobials and microbial biopesticides of ICAR-NBAIR.
- Joint surveillance or monitoring of pests, natural enemies and pathogens in collaboration with AINP on Vertebrate Pest Management should be carried out.
- AINP-Acarology will help in mass production of mites and one set of cultures will be deposited in ICAR-NBAIR. AINP-Acarology will also evaluate NBAIR technologies under the field condition for the management of mite pests.

SESSION II: Basic research on biodiversity and natural enemies of insect pests at NBAIR and biological control of plant diseases

Chairman	:	Dr.Chandish. R. Ballal, Former Director, ICAR-NBAIR,
Bengaluru		
Co-Chairman	:	Dr.T.Venkatesan, Head (GR), ICAR-NBAIR, Bengaluru
Rapporteurs	:	Dr. Deepa Bhagat, Pr. Scientist, ICAR-NBAIR, Bengaluru.
		Dr. B. S. Gotyal, Sr. Scientist, ICAR-NBAIR, Bengaluru

Salient findings

- Overall, 80.46% FAW larval mortality by the natural enemy complex was observed in northern India. *Chelonus* nr. *blackburni* (Hymenoptera: Braconidae) was the predominant parasitoid in the study area causing 49.24% larval mortality followed by *Chelonus formosanus* Sonan.
- Tetragnathid spider diversity in the paddy ecosystem from different agro-climatic zones of Tamil Nadu (14 locations) was documented. Collected specimens belonging to two genera, *Tetragnatha* Latreille and *Leucauge* White, and six species *viz. Tetragnatha javana*Thorell (10.75%), *T. keyserlingi* Simon (58.78%), *T. mandibulata* Walckenaer, *T. nitens* Audouin (13.26%), *T. vermiformis* Emerton (5.81%) and *Leucauge decorata* Blackwall (0.71%).
- Parasitisation potential of *Trichogramma chilonis* and *Telenomus remus* against fall armyworm, *Spodoptera frugiperda* was studied. In a single release, the percent parasitism of *T. remus* was highest (92%) followed by *T. chilonis* (81%) and *T. pretiosum* (45%). In the simultaneous release of *T. remus* and *T. chilonis* per cent parasitism was 88.9 % and was on par with *T. remus* single release. Among all the duration-dependent treatments of sequential release, *T. chilonis* release post 24-48 hours of *T. remus* release provided the most satisfactory outcome.
- The biocontrol potential of anthocorid predator, *Blaptostethus pallescens* was evaluated against *Scirtothrips dorsalis* and *Thrips palmi* on capsicum grown in polyhouse at Doddabalapura. Weekly release of *B. pallescens* @ 20-30 per square meter (total 4-5 releases) with alternation of biopesticide *Bacillus subtilis* reduced the thrips population by 26.2%.
- The field studies results indicated that granular formulation of *Heterorhabditis indica* and *Steinernema carpocapsae* were on par with respective wettable powder formulations in reducing the populations of fall armyworm (FAW) (58-65%), however granular formulation of *H. bacteriophora* imparted only 24-28% control.
- Field trial data showed that the reduction in *Holotrichia* grub population in sugarcane was significantly higher in field treated with *Heterorhabditis indica* at rate of 2.5×10^9 IJ ha⁻¹ than *Steinernema carpocapsae* and chlorpyrifos application. Chlorpyrifos application was more efficient in reducing the grub population than both nematode species at the lower application rate $(1.25 \times 10^9 \text{ IJ})$

ha-1). These experiments suggest *H. indica* to be a promising biocontrol agent against *Holotrichia* species in sugarcane.

- Field experiment data revealed that the application of aqueous suspension of *Spodoptera frugiperda nucleopolyhedrovirus* through two foliar sprays @ 1.5 x 10¹² OBs/ ha during 20 and 35 after sowing reduced 68.75% of FAW populación.
- Application of *Bacillus subtilis* in soil @ 2.5 kg/ha along with seed treatment @ 10g/kg, seedling root dip @ 2.5 kg/ha and foliar spray @ 20 g/L was found to be the best in reducing the incidence of blast, brown spot, bacterial leaf blight and false smut of rice.
- Application of Pant Bioagent formulation, PBAT-3 (*Trichoderma harzianum* Th14 + *Pseudomonas fluorescens* Psf 173) through seed bio-priming (10 g/kg of seeds), seedling root dip (10 g/L for 30 minutes) and three foliar sprays (10 g/L) on standing crop at 15 days interval was found effective in the management of soil borne diseases in rice, chickpea, pea and tomato.
- NBAIR-PFDWD (*Pseudomonas flourescens*) was the most effective against sheath blight, brown spot and blast with lesser Percent Disease Index (PDI) of 17.58%, 20.72% and 11.43%, respectively.
- Seed treatment with *P. flourescens* (KAU strain) followed by fortnightly soil drenching and foliar spraying with *P. flourescens* was found effective in managing *Fusarium* wilt of cowpea.
- Seed treatment with NBAIR *P. fluorescens* + NBAIR *T. asperellum soil* drenching & Seed treatment with NBAIR *T. asperellum* + NBAIR *P. fluorescens* soil drenching were found effective in the management of stem rot in sesame with higher yields
- Less incidence of powdery mildew of grape was observed in the plots treated with with *Trichoderma harzianum* @ 5 g/L. and *Ampelomyces quisqualis* @ 5 ml/L.
- Spraying of *Trichoderma reese* @ 20 ml/L (2×10^6 cfu/ml) twice during June and September was found potent in reducing cocoa pod rot.

Suggestions / Recommendations

- Relevant data should be generated through AICRP trials to register and commercialize *Spodoptera frugiperda* NPV and *Spodoptera mauritia* NPV. *Maruca vitrata* NPV should also be field tested at IIPR Kanpur and data relevant for registration to be generated.
- Predatory mite *Typhlodromus* (*Anthoseius*) *transvaalensis* to control mites and thrips should be tested in all relevant centres on priority with focus on the important target mites / thrips on two selected crops.
- Relevant data may be generated on the association of entomopathogenic fungi with chilli thrips *Thrips parvispinusy*.
- *Beauveria brongiartii* NBAIR strain can be compared with the strain of *B. brongniartii* from YSPUHF, Solan.
- KAU, Thrissur has to present results of bioassay studies on the identified fungal pathogen on cassava mealy bug.
- The centres reporting parasitism by *Encarsia* sp. on coconut RSW should get the species identified.

- Basic research related to understanding the mode of action of a bioagent or the processes or factors leading to the success or failure of a biocontrol agent or biocontrol strategy can be reported by the centres. However, pure basic studies based on laboratory research by students are not to be included in the annual reports.
- While assessing the best performing centre, one award can be for the regular centre and one for the voluntary (contingency) centre based on their performance.

SESSION III: Biological suppression of pests of food and fibre

Chairman	:	Dr. Subash Chander, Director, ICAR-NCIPM, New Delhi
Co-Chairman	:	Dr. Sunil Joshi, Head (GCC), ICAR-NBAIR, Bengaluru
Rapporteurs	:	Dr. M. Mohan, ICAR-NBAIR, Bengaluru
		Dr. B. L. Raghunandan, AAU, Anand

Salient findings

- Large-scale demonstrations (100 ha all distrcits of Punjab) on bio-intensive pest management in organic *basmati* rice using *Trichogramma chilonis* and *Trichogramma japoniucm* @ 1,00,000 per ha each (5-6 releases) at farmer's fields resulted in 55-60 and 50 per cent reduction in incidence of leaffolder and yellow stem borer, respectively
- Large scale demonstration (50 ha at Rajabahar and Colaghat, Jorhat) of biocontrol based IPM package in rice on variety 'Ranjit' revealed that maximum yield of 4963.5 kg/ha was recorded in biocontrol based IPM package treated plots, which are significantly higher compared to farmer's practice plot with 4637.5 Kg/ha. The net returns over control in BIPM package were ₹ 56291.90 as compared to ₹ 44967.50 in farmers practice
- Among different entomopathogens, entomopathogenic bacterium *Bacillus thuringiensis* and the fungus *Beauveria bassiana* could be viable alternatives to insecticides for the management of leaf folder in rice.
- Maize fall armyworm incidence was very less in the plots treated with *Trichogramma chilonis* and *Metarhizium anisopliae* Ma 35 (14%) followed by *Trichogramma chilonis* NBAIR Bt 2% (15%) when compared to control (45%).
- The demonstrations on biological control of maize stem borer, *Chilo partellus* using *Trichogramma chilonis* @ 1,00,000 per ha (two releases at 10 and 17 days old crop) conducted at farmer's fields reduced its incidence by 50-55 per cent over control
- Four applications of liquid formulations of *Trichoderma asperellum* NBAIR strain recorded low incidence of maize turcicum leaf blight which was equally effective as chemical fungicide.
- Aplication of talc based formulation of entomopathogenic fungi *Metarhizium anisopliae* Ma 35 against Pink borer, *Sesamia inferens* on Finger Millet @ 10 gml/lit at 30 & 45 days of crop emergence was effective, causing 34 and 63.1 per cent reduction in dead hearts and white earheads, respectively over the untreated control..
- Large-scale demonstrations of proven biocontrol technology using *Trichogramma chilonis* @ 50,000 per ha (10-12 releases at days interval from July to October, 2021 against sugarcane stalk borer, *Chilo auricilius* conducted at farmer's fields in

collaboration with sugar mills resulted in 50-60 per cent reduction in borer incidence over control

- Three sprays of endophytic entomopathogenic strains NBAIR-Ma35, NBAIR Bb23 (5g/lt) were found effective in the management of sugarcane early shoot borer with 8.9 and 10.3% dead heart compared to chlorantraniliprole sprays (6.9% dead heart)
- Wettable powder formulation of entomopathogenic nematode *Heterorhabditis indica* NBAIR @ 22.50 kg/ha was found superior in controlling sugarcane white grubs and recorded 3.11 per cent mean clump mortality as compared to control (11.31%)
- Six releases of *Trichogramma chilonis* @ 50,000 parasitoids/ha at weekly interval starting from 40 days after emergence of shoots found significantly superior to untreated control in reducing early shoot borer infestation from 18.67 to 6.95 % dead hearts while the chemical, Chloropyrifos reduced the early shoot borer infestation from 17.16 to 8.54 %. The net benefit of ₹ 9874/ha was received by considering the additional cost of Chlorpyrifos of ₹ 750/ha.
- Application of *Lecanicillium lecanii* NBAIR VI 8 @ 5g/L and botanicals against sucking pests of cotton, was found to be more effective than the other treatments against leafhoppers (69.76 70.83 % reduction) and aphids (91.80% reduction).
- *Beauveria bassiana* NBAIR *Bb* 35 was found effective against cotton leafhoppers (58.60% reduction) and Thrips (61.39% reduction).
- Three year evaluation of Bio-intensive pest management practices for the management of pink bollworm revealed that BIPM practices recorded lesser rosette flowers (1.22-7.87%), lesser green boll damage (9.20 14.23%) and higher yield (18.90-26.60 q/ha) compared to the control plots (2.87 43.67%, 12.80 24.66% and 15.98-11,25 q/ha respectively, but was inferior to the insecticide treatment (0.81-6.80%, 7.10 9.67% and 22.15 31.72 q/ha) respectively.
- Application of neem oil (0.5%) and entomofungal patohogen, *Isaria fumosorosea* (5g /litre) was found effective in the bio-suppression of RSW during high infestation period. However, conservation biological control using the aphelinid parasitoid, *Encarsia guadeloupae*, neuropteran predator, *Apertochrysa* sp. and sooty mould scavenger beetle, *Leiochrinus nilgirianus* subdued the invasive potential of RSW after four-month period.
- Augmentative release of the larval parasitoids, *Goniozus nephantidis* (20 /palm) and *Bracon brevicornis* (30/palm) reduced the incidence of black headed caterpillar from 39% to about 1% in a period of two years at Kasaragod.
- Area-wide innundative release of the green muscardine fungus, *Metarhizium majus* @ 5 x10¹¹ spores/m³ on to the breeding sites (wooden logs & cow dung pits) reduced the coconut rhinoceros beetle incidence and spear leaf damage of coconut.

Suggestions / Recommendations

- Along with trade names of commercial formulations of microbials, scientific names should be mentioned.
- Availability of Trichocards at all the AICRP-BC centres and their stakeholders should be ensured for large scale demonstrations and distribution to farmers.

- Results of common experiments of different centres can be pooled and presented for comparative analysis of treatment's efficacy.
- PPP mode may be explored to ensure the timely availability of quality bio-agents/biopesticides to attain sustainable pest and disease management.

SESSION IV: Biological suppression of pests of oil seeds and pulses

Chairman	:	Dr. H. C. Sharma, Former Vice Chancellor, YSPUHF, Nauni, HP
		& Chairman, RAC, ICAR NBAIR, Bengaluru
Co-Chairman	:	Dr. A. N. Shylesha, Head (GCU), ICAR-NBAIR, Bengaluru
Rapporteurs	:	Dr. K. Selvaraj, ICAR-NBAIR, Bengaluru
		Dr. Shyamal Sahoo, UBKV, Pundibari

Salient findings

- Chitin enriched oil formulation of entomofungal pathogen *Lecanicillium saksenae* (10⁷ spores mL⁻¹) @ 10 ml/L was found effective in managing pod bugs in cowpea with a mean population of 0.5 bugs per plant as compared to control (8 bugs/plant)
- Large scale demonstration of HearNPV in chickpea showed that three applications of HearNPV was found effective in reducing the pod borer damage and increasing 20 % more yield.
- Large scale demonstration (15 ha) of two applications of *Metarhizium rileyi* at vegetative and reproductive stages against soybean defoliators showed that there was drastic reduction of defoliators and 10 percent increase in yield over farmers practice.
- Application of *Metarhizium rileyi* (KK-Nr-1) @ 1×10⁸ spores/ml (5g/L) reduced the groundnut leafminer damage to the tune of 69.57 per cent and it was at par with *M. rileyi* @ 1×10⁸ @ 5 gm/l (UAS- Dharwad) with 68.64 per cent reduction. The highest per cent reduction of groundnut defoliator was noticed in *M. Rileyi* (KK-Nr-1) @ 1×10⁸ spores/ml (5g/L) (67.45 %) followed by *M. rileyi* @ 1×10⁸ @ 5 gm/l (UAS-Dharwad) 63.75 %).
- Among the bio-pesticides, Azadirachtin 3000 ppm @ 2.5 ml/lit treated plots showed the lowest number of mustard aphids per shoot (7.70 Nos.) followed by *Beauveria* bassiana (11.83 Nos.).
- Population of mustard aphid in BIPM module was 4.40 Nos./plant while in farmers' practice it was 17.30 Nos./plant. In farmers practice, the yield (6.80 q/ha) was significantly lower than that of BIPM module (10.40 q/ha).

Suggestions / Recommendations

- Role of entomopathogenic fungi as endophytes should be assessed against sucking pests.
- Mass production of parasitoids may be standardized for managing pod bugs in pulses.
- Experiments on other economically important oilseed crops may also be taken up and incorporated in technical program.
- Population of natural enemies should be recorded in all the treatments including control.
- Package of practices recommendations with label claim insecticides should be taken as standard control while evaluationg bioagents against crop pests.

• Experiments should be planned in such a way to the input costs and enhance the crop yield.

SESSION V: Biological suppression of pests of fruits, vegetables and polyhouse crops

: Dr. H. B. Singh, Head (Rtd), Department of Mycology & Plant
Pathology, Institute of Agricultural Sciences, BHU, Varanasi
: Dr. Murali Baskaran, Principal Scientist, ICAR- NIBSM, Raipur
: Dr. P. S. Shera, PAU, Ludhiana
Dr. M. Sampath Kumar, ICAR-NBAIR, Bengaluru

Salient findings

- Tomato fruit borers damage was very low (13.83 %) in the plots where tomato was intercropped with cowpea and marigold as border crop which was statistically at par with the treatment where tomato was intercropped with chickpea and bordered with mustard (14.65 %).
- Installation of yellow sticky traps @ 4 per 250m² and two releases of *Chrysoperla zastrowi sillemi* @ 4 larvae / plant were significantly better in reducing the population of aphids and whiteflies under net house conditions in tomato.
- Among the different biopesticides, *L. lecanii* V1-8 @ 5 ml/L was the best treatment in reducing the mean population of aphid, *B. brassicae* (3.24/plant) and *P. xyllostella* (3.07/plant) followed by *B. bassiana* Bb-45 *i.e.*, aphid (3.68/plant) and DBM (3.67/plant), respectively in cabbage.
- *Beauveria bassiana* (CISH strain) and *Beauveria bassiana* (NBAIR strain) @ 1x10⁸ spores/g @ 5 g/L were found very effective in reducing the mango thrips.
- Large scale demonstration of bio- intensive module found very effective in reducing the mango hopper population at Anand.
- Among the entomopathogenic fungi tested against citrus thrips and mites, *Lecanicilium lecanii* NBAIR VI 8 @ 5g/L was found very effective.
- Entomopathogens, *Lecanicilium lecanii* NBAIR –VI-22 and *Metarhizium anisopliae* NBAIR-Ma 4 @ 5g/L was found effective against guava and aonla mealybugs respectively.
- BIPM practices involving, ploughing in orchard during March-April, clean cultivation, regular collection and destruction of fallen infested fruits during May-June and releases of *Trichogramma embryophagum* @ 4000 parasitized eggs per tree, six times at 7-10 days interval were significantly better in reducing the damage by litchi fruit borer as compared to farmer's practice.
- Three weekly sprays of combination of Azadirachtin 1500 ppm and *Lecanicilium lecanii* NBAIR strain @ 5.0 ml/ lit. reduced green apple aphid by 73. 28 % and reduced the apple mites by 44.66 %.
- Three sprays of Azadirachtin 10000 ppm @ 2.0 ml/ L followed by spraying of *Metarhizium anisopliae* NBAIR Ma4 (5g/L) and *Lecanicilium lecanii* NBAIR V18 (5g/L) resulted in 85.0% reduction of apple woolly aphid.

- *Heterorhabditis bacteriophora* (5000IJs/gallery) was found the most effective bioagent and resulting in 67 per cent mortality of apple leopard moth, *Zeuzera multistrigata*
- Two weekly releases of anthocorid bug, *Blaptostethus pallescens* @ 400 bugs/ plant revealed 25.27 and 35.91% reduction in European red mite and two spotted spider mite on apple respectively over untreated control
- Larval parasitoid, *Bracon hebetor* parasitization on mango leaf webber (*Orthaga euadrusalis*) under filed conditions was recorded up to 62.5%.
- Spraying biopesticide *Metarhizium anisopliae* NBAIR Ma4 @5 g/L at three sprays at 7 days interval reduced the manago thrips to 49.4%.
- Application of *Purpureocillium lilacinum* CISH strain and *Bacillus* spp CISH strain along with with vermicompost reduced the wilt and root knot nematode incidence in guava plants with low root not index of 1.88 compared to the control root not index of 3.19.
- *Metarhizium anispliae* (NBAIR-Ma-4), *Beauveria bassiana* (NBAIR-Bb-5a) and Azadirachtin 10000 ppm effectively reduced guava and aonla mealybug populations.

Suggestions / Recommendations

- When neem has to be integrated as component of BIPM, neem oil should be used for sucking pests while other neem formulations should be used for chewing pests.
- PC cell to provide a datasheet for recording observations of experiments to be followed by all the centres uniformly.
- In the evaluation trials of microbial agents, neem products to be used as control in addition to chemical insecticides.
- Public private partnership model should be explored for production of most potent local isolates of biopesticides by the centres.
- Data generated in AICRP trials should be compiled across the centres for publications in high impact factor journals.

SESSION VI: Formulation of technical programme for 2022-25

Chairman	:	Dr. S. C. Dubey, ADG (PP&BS), ICAR, New Delhi
Co-Chairman	:	Dr. S. N. Sushil, Director, ICAR-NBAIR, Bengaluru
Rapporteurs	:	Dr. Jagadeesh Patil Sr. Scientist, ICAR-NBAIR, Bengaluru
		Dr. B. S. Gotyal Sr. Scientist, ICAR-NBAIR, Bengaluru

Suggestions / Recommendations

- Wherever possible, additional centres and bio-agent strains should be included in the experiment.
- Recommended package of practice of the respective universities should be included in the experiment.
- Isolation distance of 100m should be maintained wherever *Trichogramma* experiments are being conducted.
- Combined experiments for both disease and insect pests should be formulated.

SESSION VII: Institute and industry interactions

Chairman	:	Dr. T.M. Manjunath, Director (Rtd.), Mansanto Pvt Ltd, Bengaluru
Co-Chairman	:	Dr. M. Nagesh, Principal Scientist, ICAR- NBAIR, Bengaluru
Rapporteurs	:	Dr. R. S. Ramya, Scientist, ICAR-NBAIR, Bengaluru
		Dr. Jaydeep Halder, Sr. Scientist ICAR- IIVR, Varanasi

Suggestions / Recommendations

- Industries can get the products tested through AICRP Biocontrol Network at different locations on payment basis.
- Industries should support institutes for developing products with more shelf life.
- Institutes should concentrate in developing liquid based and nano based formulations.
- Commercial scaling should be intensified and establishment of start-ups, especially by women entrepreneurs should be encouraged.
- Reforms are needed in India for dispensing away the need of toxicological data for biopesticides like *Metarhizium anisopliae*, *Beauveria bassiana*, Bt, NPVs etc.

SESSION VIII : Valedictory and Plenary

Chairman	:	Dr. T. R. Sharma, Deputy Director General (CS), ICAR, New Delhi
Co-Chairmen	:	Dr. S. C. Dubey, ADG (PP&BS), ICAR, New Delhi
		Dr.S.N.Sushil, Director, ICAR - NBAIR, Bengaluru
Rapporteurs	:	Dr. Richa Varshney, ICAR- NBAIR, Bengaluru
		Dr. K.T. Shivakumara, NBAIR, Bengaluru

Suggestions / Recommendations

- Bioagent formulations used in the experiments are not uniform. NBAIR should produce uniform formulations and distribute them to all AICRP centers.
- Scientist-industry partnership need to be strengthened to ensure availability of biocontrol agents.
- Uniformity should be followed in experimentation methodology and recording observations in all the experiments.
- Strong collaborations with university should be developed for solving mite problems.
- Quality, scalability, traceability, applicability is very important for biocontrol agents.
- One day should be spent in the annual review meeting exclusively for discussing and finalizing of technical programme.
- Private companies should be invited by NBAIR to showcase the technologies and to bridge the gap between Institute and Private companies.
- All AICRP research data should be collated, analysed and published in peerreviewed journals.

Overall Recommendations

- 1. All the plant protection institute directors and AINPs project coordinators should be invited for meeting at ICAR-NBAIR, Bengaluru to form collaborative research project proposals and outcome of these research proposals may be presented in the next annual AICRP-BC meeting.
- 2. Combined experiments for both disease and insect pests should be formulated.
- 3. PC should take initiative in identifying ICAR NBAIR as one of the referral lab for testing the quality of bio pesticides.
- 4. Molecular signatures have to be generated for the promising microbial bioagents and same bioagents have to be deposited in recognised nodal centres.
- 5. Focus has to be given to develop climate resilient biocontrol agents like temperature tolerant, drought tolerant etc.
- 6. Standard formulation technologies should be followed by all the centres while developing a product against a crop pest or disease.
- 7. AICRP on Biological Control should involve other plant protection institutes like ICAR-NCIPM for conducting large scale demonstrations.
- 8. PC cell should provide data sheet for recording observations of the experiments for uniformity.
- It was decided that all the participating centres should be grouped into two categories
 Regular and 2. Voluntary. All voluntary centres should be funded with minimum contingency to address minimum requirements of conducting the experiments.
- 10. Industries should be encouraged to test their products and generate bioefficacy data through AICRP Biocontrol network on payment basis.

Formulation of technical programme 2022 - 2025

New experiments

CROP WISE PROGRAMME

1. MAIZE

1.1. Evaluation of native isolates of entomopathogens (ANGRAU & UAS (R) against maize Fall armyworm (RARS Anakapalle, UAS Raichur, COA, Tripura)

Objective		To evaluate the native isolates of entomopathogens against maize FAW	
Crop	:	Maize	
Variety		Location specific recommended variety	
Treatments		3	
Replications		7	
Plot size		40 m^2	
/Replication			
Treatments	:	T1: Bacillus thuringiensis RARS TPT-C33 1% @ 10ml/L	
		T2: Bacillus thuringiensis NBAIR Bt 25 @10ml/L	
		T3: POP recommendation (Spraying Azadirachtin	
		1500 ppm @ 2 ml/L at 15 days after sowing + Chlorantraniliprole	
		18.5 SC@ 0.4 ml/L at 25 days after sowing + Emamectin	
		benzoate 5SG@ 0.4gm/L at 35 days after sowing	
		T4: Untreated control	
		Three sprays :20, 35 and 50 days after sowing	
Observations	:	Number of larvae per plot	
		Number of damaged plants per plot	
		Number of dead larvae due to Bt per plot	
		20 plants will be randomly selected for FAW incidence and larval	
		mortality	

1.2. Large scale demonstration of bioefficacy of multiple insecticide tolerant *Trichogrammachilonis*NBAIR MITS for the management of fall armyworm in maize (RARS Anakapalle. UAS Raichur)

Objective		To demonstrate the bioefficacy of multiple insecticide tolerant <i>Trichogramma chilonis</i> for the management of fall armyworm in maize		
Crop		Maize		
Variety		Location specific recommended variety		
Area		10 ha		
Location		Ranasthalammandal, Srikakulam district		
Treatments	:	 T1: Multiple insecticide tolerant <i>Trichogramma chilonis</i> cards (50,000 eggs/ha) (2 releases, first release after one week of sowing & second one after one week of first release) 		
		T2: POP recommendation (Insecticidal check : Spraying Azadirachtin 1500 ppm @ 2 ml/L at 15 days after sowing + Chlorantraniliprole		

		18.5 SC@ 0.4 ml/L at 25 days after sowing + Emamectin benzoate 5SG@ 0.4gm/L at 35 days after sowing
Observations	:	Number of damaged plants per plot; Number of dead larvae per plot; Percent egg parasitism; Number of predators per plant; Grain yield; 50 plants will be randomly selected for FAW incidence and larval mortality

1.3 Large scale demonstration of BIPM module for the management of maize FAW (RARS Anakapalle; SKAUST Jammu; MPKV Pune; TNAU Coimbatore; ICAR-IIMR Hyderabad; UAS Raichur; PAU Ludhiana; AAU Jorhat; PJTSAU Hyderabad; ICAR-IIMR (WN) Hyderabad; ICAR-NBAIR Bengaluru; CAU Pasighat, AAU Anand)

Objective		To demonstrate the BIPM module for the management of maize FAW
Crop		Maize
Variety		Location specific recommended variety
Plot size		5 ha
/Replication		
Treatments		 T1:BIPM module Installation of pheromone trap @ 10 traps/acre Release of <i>Trichogramma chilonis</i>(1,00,000 eggs/ ha) (2 releases, first release after one week of sowing & second one after one week of first release) NBAIR Bt-25 @ 10ml/L (1-2 sprays depending on pest incidence, first spray after 20 days after sowing to target early instars of FAW larvae) ICAR-NBAIR <i>Metarhizium anisopliae</i> (Ma-35) @ 5g/L (1-2 sprays depending on pest incidence), first spray 10 days after first spray of Bt-25 to target late instars of FAW larvae Collection and destruction of egg masses of fall armyworm at regular interval T2: POP recommendation (Spraying Azadirachtin 1500 ppm @ 2 ml/L at 15 days after sowing + Emamectin benzoate 5SG@ 0.4gm/L at 35 days after sowing
Observations	:	 50 plants will be randomly selected for FAW incidence and larval mortality Number of damaged plants per plot Number of dead larvae(due to bacteria/virus/fungus) per plot Percent egg parasitism Number of predators per plant
		Final yield

MILLETS

2. SORGHUM

2.1 Demonstration of BIPM module for the management of FAW on Sorghum and Millets (ICAR-IIMR, Hyderabad, UAS Raichur)

Objective		To demonstrate the efficacy of BIPM module for the management of sorghum FAW
Сгор		Sorghum
Location		03 (Warangal, Solapur, Bellary)
Cultivar		CSV 29R
Plot size /Area		2 ha
Treatments	:	 T1: Biointensive module: Release of <i>Trichogramma chilonis</i> 1 lakh/ha (2 releases, first release one week of planting & second one after one week of release + spray of <i>Metarhizium anisopliae</i> NBAIR Ma 35 @ 5 ml/litre at 20, 45 DAE T2:POP recommendation (Seed treatment with Fortanza duo @ 6 ml/kg of seed) T3: Untreated control
Observations	:	Select 20 plants per plot and take observations on following parameters: • Number of egg patches per plot what is plot size??? • Number of larvae per plant/plot • Number of damaged plants/plot • Number of dead larvae (bacteria/virus/fungus) per plot • Percent egg parasitism • Final grain?? Yield

PULSES

3. Chickpea

3.1. Biological suppression of chick pea pod borer *Helicoverpa armigera* and soil borne diseases of chickpea (Fusarium wilt, Dry root rot and Collar rot) (AAU Anand, MPUAT-Udaipur; PAU Ludhiana; UAS Raichur, IGKV Raipur; AAU Jorhat, SKUAST Jammu, COA Tripura)

Objective	:	To biologically suppress the pod borer, Helicoverpa armigera infesting
		chickpea
Crop		Chickpea
Variety	:	Location specific recommended variety
Design of	:	Randomized Block Design.
experiment		
Treatment	:	4

Replication/	:	5
Plot size/	:	40m ²
Replication		
Cropping season	:	Rabi
Treatment details	:	 T1: Seed treatment with @10g/Kg and soil application twice @5kg/ha of <i>Trichoderma harzianum</i> NBAIR strain at 25 & 50 days after sowing + <i>Spraying of Bacillus thuringiensis</i> NIBSM Bt 18 1% @10ml/L two sprays at pod initiation and pod formation stage at 15 days interval T2: Pheromones traps @ 25/ ha (NBAIR Product) T3: POP recommendation (Quinalphos 25EC @250g a.i/ha – recommended newer generation biorational insecticide may be incorporated and Carbandazim+ Mancozeb soil drenching@ 1g/L at 25 & 50 days after sowing T4: Untreated control
Observations	:	 Number of larvae/ m row length before spray and 3, 7, 10 and 15 days after spray Disease incidence at 30, 60, 90 days after sowing Total and damaged pods at harvest. Record natural enemies from 5 plants in each plot. Pod yield will be recorded on whole plot basis.

3.2. Large scale demonstration of bioefficacy of *Bacillus thuringiensis* against chickpea pod borer (PAU, Ludhiana)

Objective	:	Large scale demonstration of bioefficacy of Bacillus thuringiensis against		
		chickpea pod borer		
Crop	:	Chickpea		
Location		Bathinda, Mansa and Sangrur, Ludhiana		
Variety	:	Location specific recommended variety		
Area	:	4 ha		
Treatments	:	T1: Bacillus thuringiensis kurstaki NBAIRBt G4 10ml/L		
		T2: POP recommendation (Bacillus thuringiensis kurstaki DOR Bt 10ml/L		
		2 sprays (First spray at pod initiation and second 10 days after)		
Observations	:	• Number of larvae/ m row length before spray and 3, 7 and 10 after each		
		spray		
		Total and damaged pods at harvest		
		• Natural enemies / m row length		
		Pod yield		
		Incremental benefit cost ratio		

3.3. Large scale demonstration of entomopathogenic fungi, *Metarhiziumrileyi* against chick pea pod borer, *Helicoverpaarmigera* (UAS, Raichur)

Objectives	:	Large scale demonstration of entomopathogenic fungi, Metarhizium rileyi
		against chick pea pod borer, Helicoverpa armigera
Crop	:	Chickpea
Variety	:	Region specific recommended variety
Location		Dhummansur Village, Humnabad Taluk, Bidar district, Karnataka
Area	:	50 ha
Treatments	:	T1: <i>Metarhizium rileyi</i> KK-Nr-1 (1×10 ⁸ spores/g) @ 5 g/L
		T2: POP recommendation (Emamectin benzoate 5 SG @ 0.2 gm/L)
		2 sprays (First spray at pod initiation and second 10 days after)
Observations		Number of defoliating larvae of H. armigeraper meter row length - and grain
		yield will be recorded

4. **RED GRAM**

4.1. Evaluation of bio-control agents against pod borers in red gram (UAHS, Shimmoga, COA Tripura, Lembucherra)

Objective	:	Evaluation of bio-control agents against pod borers in red gram
Crop	:	Red gram
Variety	:	BRG-5
Design of	:	Randomized Block Design.
experiment		
Treatments		3
Replications		7
Plotsize/Replic	:	40^2
ation		
Cropping	:	Kharif
season		
Treatments	:	T1: Bacillus thuringiensis (NBAIR BtG4 2%) @ 10ml/L
		T2: POP recommendation (Chlorantraniliprole 18.5% SC@ 0.4 ml/lit)
		T3: Untreated control
		3 sprays at pre flowering, post flowering and pod formation stage
Observations	:	• Number of larvae/ m row length before spray and 3, 7, 10 and 15 days
		after spray
		• Total and damaged pods at harvest.
		• Record natural enemies from 5 plants in each plot.
		• Pod yield will be recorded on whole plot basis
Approved to	cor	tinue the experiment with one best organism

5. GREEN GRAM

5.1. Evaluation of different entomopathogens against spotted pod border, *Maruca vitrata* in green gram (AAU Anand; SKUAST Jammu; TNAU Coimbatore; RARS Anakapalle)

Objective	:	Evaluation of different entomopathogens against spotted pod border, Maruca		
		vitrata in green gram		
Crop	:	Green gram		
Variety	:	Location specific recommended variety		
Design of	••	Randomized Block Design.		
experiment				
Treatment	:	3		
Replication	•••	7		
Plotsize/Repli	:	$40m^2$		
cation				
Treatments		T1: Bacillus thuringiensis NBAIR BtG4 2% @ 10 ml/lit		
		T2: POP recommendation (Azadirachtin 1% 1500ppm @ 2 ml/L		
		T3: Untreated control		
		Two sprays : First spray at flowering stage and second spray 15 days after first		
		spray		
Observations	:	• Pod damage (%) recorded at 15 days after spraying		
		• Number of larvae/meter row length		
		• Yield (q/ha)		

6. COWPEA

6.1 Evaluation of entomopathogens against cowpea sucking pests (MPKV- Pune; SKUAST, Jammu; KAU, Vellayani; KAU Kumarakoam)

Objective	:	Evaluation of entomopathogens against cowpea sucking pests
Crop	:	Cowpea
Variety	:	Location specific recommended variety
Design of experiment	:	Randomized Block Design.
Treatments	:	3
Replications	:	7
Plot size	:	40m ²
/Replication		
Treatments	:	T1: Lecanicillium saksenae KAU (1×10 ⁸ cfu/ml) @5ml/L
		T2: POP (Thiamethoxam 50 WP @ 2g/10 L seed treatment??? Or select
		recommended biorational insecticides for foliar application
		T3: Untreated control

		Two sprays at 15 days interval when the pest reaches ET
Observations	:	Aphids: Pre-spraying count and post-spraying count of aphids on five
		randomly selected plants (terminal shoots) of each plot before as well as 3,
		7 and 10 days after each treatment
		Pod bug: Pre-spraying count and post-spraying count of pod bugs per plot
		before as well as 3, 7 day and 10 days after each treatment.
		Yield (kg)

Oil Seeds

7. GROUNDNUT

7.1 Evaluation of entomopathogens against leaf miner and tobacco caterpillar in groundnut (UAS Raichur; ANGRAU Anakapalle; TNAU Coimbatore)

Objective		To evaluate the entomopathogens against leaf miner and tobacco caterpillar in groundnut
Crop		Groundnut
Variety		Regional specific recommended variety
Design of experiment		RBD
Treatments	:	4
Replications	:	5
Plot Size/Replication	:	50 m^2
Treatment Details		T1: Metarhizium rileyi KK-Nr-1 (1×10 ⁸ spores/g) @ 5 g/L
		T2: Bacillus thuringiensis RARS TPT-C33 2% @ 1ml/L
		T3: POP Recommendation (Emamectin benzoate 5 SG @ 0.2 gm/L)
		T4: Untreated control
Observations	:	Pre and post treatment observations on
		Number of active leaf miner per 20 leaflet
		Damaged plants /plot due to Spodoptera litura
		Number of dead larvae (bacteria/virus/fungus) per plot
		Pod and Halum yield

COMMERCIAL CROPS

8. SUGARCANE

8.1 Field evaluation of ICAR-NBAIR endophytic entomopathogenic strains against shoot borers (*Chilo infuscatellus* and *Chilo sacchariphagus indicus*) in sugarcane (ANGRAU, Anakapalle)

Objective	:	To evaluation of ICAR-NBAIR endophytic entomopathogenic strains
		against shoot borers
Crop		Sugarcane
Variety		Region specific recommended variety
Design of	:	RBD

experiment			
Treatments		3	
Replication		7	
Plot size	:	50 m ²	
/Replication			
Cropping season	:	Kharif	
Treatments	:	T1: Sett treatment with <i>Metarhizium anisopliae</i> NBAIR Ma-35 (1x10 ⁸ spores/ml) @ 5 g/L+ Spraying <i>Metarhizium anisopliae</i> NBAIR Ma-35 T2: Spraying chlorantraniliprole 18.5@ 0.3 ml/L	
		T3: Untreated Control Sett treatment at planting and spraying 3times at 14 days interval from 25 days after germination.	
Observations	:	 Cumulative incidence of early shoot borer up to 120 days after planting Internode borer incidence (%) in 50 canes Internode borer intensity (%) i.e., number of bore holes per cane in 10 m row length Cane yield data (t/ha) and single cane weight (kg/cane) Sucrose (%) and incremental benefit cost ratio at harvest. 	

8.2 Field evaluation of *Metarhizium anisopliae* against Sugarcane white grub *Holotrichia* serrata (SBI Coimbatore; PJTSAU Hyderanad; UAS Raichur)

Objective	:	To evaluate entomofungal pathogen <i>Metarhizium anisopliae</i> against
		Holotrichia serrata
Crop		Sugarcane
Variety		Region specific recommended variety
Design of	:	RBD
experiment		
Treatments		3
Replication		7
Plot size	:	50 m ²
/Replication		
Cropping season	:	Kharif
Treatments	:	T1: Metarhizium anisopliaeSBI Ma-16 (1x10 ⁸ spores/ ml) 5 ml/L
		T2: POP Recommendation (Imidacloprid 40 %+ Fibronil 40% WG 200 g/
		acre)
		T3: Control
		Two soil applications will be done during July and September
Observations	:	No. of grubs observed in 10 m row length of the crops
		Cane yield in each treatment
Approved to cont	inue	the experiment with one best organism

8.3 Field evaluation of *Aschersonia placenta* against sugarcane whitefly *Aleurolobus barodensis* in endemic location (SBI Coimbatore)

Objective	:	To evaluation of <i>Aschersonia placenta</i> against sugarcane whitefly <i>Aleurolobus barodensis</i> in endemic location
Crop		Sugarcane
Variety		Region specific recommended variety
Design of	:	RBD
experiment		
Treatments		3
Replication		7
Plot size	:	50m ²
/Replication		
Cropping season	:	Kharif
Treatments	:	T1: Application of Aschersonia placenta SBI AP 01 (1x10 ⁸ spores/ ml) 5
		ml/L
		T2: POP Recommendation (Chlorpyriphos 20 EC (300g a.i./ha)
		T3: Untreated control
Observations	:	The population of whitefly nymph, puparia, and adult per cm ² will be taken
		in the top, middle and basal portion of five sugarcane leaves at three spots
		in treatment plots of 1 cent size, with required replications.
		Pre-treatment observations on the whitefly population before imposing
		treatments will be taken. Post-treatment counts will be taken one month
		c i i
		after the treatment. Fungal recovery if any would be observed. Nature enemy incidence if any, will be observed among different treatments.

8.4 Large scale demonstration of EPN against white grubs in sugarcane ecosystem (MPKV Pune, SBI Coimbatore)

Objectives	:	To demonstrate Entomopathogenic nematode Heterorhabditis indica
		NBAIR against white grubs in sugarcane ecosystem
Crop	:	Sugarcane
Variety	:	Region specific recommended variety
Location		DondaTal Khel, Pune district
Area	:	6 ha
Treatment		T1: Heterorhabditis indica NBAIR WP formulation
		T2: POP recommendation (Imidacloprid 40 %+ Fibronil 40% WG 200
		g/ acre)
Observation		No. of healthy clumps and dead clumps / 1 m row length before
		application of EPN
		Percent reduction of white grub population
		Yield of sugarcane

VEGETABLES

9. TOMATO

9.1 Evaluation of Predatory mite *Neoseiulus longispinosus* for the management of spider mite *Tetranychus urticae* in tomato under polyhouse conditions (Dr YSPUHF Solan)

Objective		To evaluate predatory mite <i>Neoseiulus longispinosus</i> for the management of spider mite <i>Tetranychus urticae</i> in tomato under polyhouse conditions
Сгор		Tomato
Design of experiment		RBD
Treatments		4
Replication		6
Variety	:	Location specific popular variety
Plot size/Replication	:	30 m^2
Treatments	:	 T1: 3 releases of predatory mite <i>Neoseiulus longispinosus</i>@ 10 per plant at weekly interval T2: 3 releases of an anthocorid predator <i>Blaptostethus pallescens</i> @ 20 per plant at weekly interval T3: Chemical control: Spiromesifen 240SC @100 g.a.i ha⁻¹ at 15 days interval T4: Control
Observations	:	 First release/ treatment will be initiated at the first appearance of the mite Observations on mite count will be recorded at weekly intervals. Yield data at each picking will also be recorded.

10. OKRA

10.1 Evaluation of entomopathogens against sucking pests of Okra (hoppers, aphids and Whitefly) (ICAR-IIHR Bengaluru, AAU Anand)

Objective		To evaluate entomopathogens against sucking pests (hoppers, aphids and Whitefly) of Okra
Crop		Okra
Pest		Sucking pests
Variety	•••	Region specific recommended variety
Treatments		3
Replications		7
Plot size /	•••	50 m^2
Replication		
Treatments	•••	T1: Oil based formulation of Metarhizium anisopliae IIHR Strain @5ml/L
		T2: POP Recommendation (Imidacloprid 17.8 SC @0.3ml/l)
		T3: Control

		Five rounds of spray at weekly intervals starts a five days after sowing
Methods	:	Population of hoppers and thrips a day before application and 3 rd , 7 th day after
and		application (4 leaves/plant)
observations		Record hopper damage symptoms and YVMV incidence.
		Marketable yield at harvest replication wise in each treatment

11. CUCUMBER

11.1 Efficacy of reduviid predator *Sycanus collaris* against tobacco caterpillar *Spodoptera litura* on cucumber in polyhouse (KAU Thrissur, NIPHM Hyderabad)

Objective		To evaluate the reduvid predator Sycanus collaris against tobacco caterpillar
		Spodoptera lituraon cucumber in polyhouse
Crop		Cucumber
Pest		Tobacco caterpillar Spodoptera litura
Variety	:	KPCH 1
Treatments		3
Replications		7
Plot size /	:	10 m^2
Replication		
Variety	:	KPCH 1
Treatments	:	T1: Release of Sycanus collaris @ 20 nymphs/10m ²
		T2: Recommended insecticide
		T3: Control
Methods and observations	:	Third instar larvae of <i>S. litura</i> will be released on to the cucumber plant at the rate of ten larvae per plant, 20 days after planting. Fifth instar nymphs of <i>S. collaris</i> will be released after two days establishment of pest on crop. Mortality of <i>Spodoptera litura</i> will be assessed 1, 3 and 5 days after release of
		predator
		Yield per plant

11.2 Demonstration of *Neoseiulus longispinosus* for the management of spider mites in cucumber in Polyhouse (YSPHUF Solan)

Objective	To demonstrate the efficacy of Neoseiulus longispinosus for the
	management of spider mite
Location	Solan district, Himachal Pradesh
Crop	Cucumber
Pest	Spider mite
Variety	University recommended variety
Area	$1000m^2$
Treatments	T1: Release of Neoseiulus longispinosus@ 50 per plant 3-4 times at
	weekly interval starting from the first appearance of spider mite
	T2: Spiromesifen 240SC @100g.a.i ha ⁻¹ at 15 days interval
Methodology and	1. Pre-treatment count of mites
observations	2. Post treatment count of mites at 7 days interval

3. Yield		3. Yield
----------	--	----------

12. BITTER GOURD

12.1 Evaluation of BIPM practices against sucking pests and fruit flies Zeugodacus cucurbitae in bitter gourd (ICAR-IIVR Varanasi, KAU Kumarakoam)

Objective		Evaluation of BIPM practices against sucking pests and fruit flies <i>Zeugodacus cucurbitae</i> in bitter gourd
Crop		Bitter gourd
Pest		Sucking pests and fruit flies Zeugodacus cucurbitae
Variety	:	Regional specific recommended variety
Treatments		3
Replications		7
Plot size / Replication	:	40 m ² (follow standard plot size of one cent 8x5 m)
Treatments	:	T1: BIPM practices
		• Installation of cue lure @ 15/ha for monitoring for fruit flies
		• Spray of <i>Lecanicillium lecanii NBAIR</i> V18 5 g /L + Neem oil (2.5
		ml/L) for sucking pests
		• Bacillus thuringiemsis NBAIR Bt G4 @10ml/Lfor leaf Webber
		(Diaphania indica)
		T2: POP Recommendation (Jaggary 1% + Malathion 50 EC@2ml/L
		T3: Untreated control practice
Observations	:	For pre and post treatment observation 5 plants will be selected randomly from
	•	each sub plots and per cent damaged fruits will be recorded after imposing
		each treatment at 7 and 10 day interval.
		Epilachna beetle, whitefly, jassids, Cucumber moth (<i>Diaphania indica</i>) will be observed in each sub plot considering randomly selected 5 plants.
		Both nymphs and adult of aphid will also be collected on the basis of number of population per leaf.
		Natural enemy complex will also be recorded per plant basis.
		Yields of marketable fruits at each harvest will be pooled together to get the average yield.

13. CAULIFLOWER

13.1 Large scale field evaluation of Biointensive management practices for the pests of cauliflower (YSPUHF Solan, CAU Pasighat)

Objective	To evaluate the Biointensive management practices for cauliflower pests
Crop	Cauliflower

Pest		Aphids, Brevicoryne brassicae and Pieris brassicae
Variety	:	Region specific recommended variety
Design of		RBD
experiment		
Treatments		3
Replications		7
Plot size /	:	500 m^2
Replication		
Treatments	:	T1: BIPM
		• Mustard as trap crop
		• One spray of Azadirachtin 1500 ppm (1%EC) (2ml/L)
		• Release of Chrysoperla zastrowi sillemi (4 larvae/infested plant) will
		be released 7 days after the application of Azadiractin concentration
		• Mechanical destruction of egg masses and early gregarious larval instars of <i>Pieris brassicae</i>
		• Two sprays of <i>Bacillus thuringiensis</i> NBAIR BTG4 10ml/L). First spray with the initiation of lepidopteran pest and subsequent spray at ten days interval
		T2: POP recommendation ()
		T3: Control
Observations	:	Aphid and caterpillar counts will be recorded at weekly interval starting from
		the first appearance of the pest until harvest

14. ONION

14.1 Evaluation of Bio-efficacy of entomopathogens against onion thrips (*Thrips tabaci* L.) (TNAU Coimbatore, AAU Anand)

Objective		To evaluate the Bio-efficacy of entomopathogens against onion thrips (<i>Thrips tabaci</i> L.)
Crop	:	Onion
Variety		Region specific recommended variety
design of experiment		RBD
Treatments		3
Replications		7
Plot size/ Replication		20 m^2
Pest	:	Onion thrips

Treatments	 T1: Lecanicillium lecanii NBAIR VI8 (1x 10⁸ spores/g) @ 5g/L) + Azadirachtin 1500ppm @ 2 ml/lit T2: POP recommendation (Dimethoate 30 EC) T3: Control First spray will be carried out with the initiation of pest and subsequent two sprays will be carried out at ten days interval. Five plants will be randomly selected from net plot area and observations will be recorded. Number of thrips per plant will be recorded before treatment application and at 3rd, 7th and 10th day after each spray.
Observations	No. of thrips/ plant Bulb yield - kg/plot

Fruit Crops

15. BANANA

15.1 Evaluation of entomopathogens against banana Pseudostem weevil, *Odoiporous longicollis* (KAU Vellayani, KAU Kumarakoam)

Objective		To evaluate entomofungal pathogens against banana Pseudostem weevil Odoiporous longicollis				
Сгор	:	Banana				
Variety		Nendran				
design of experiment		RBD				
Treatment		3				
Replications		7				
Plot		50 m^2				
size/Replication						
Pest	:	Pseudostem weevil				
Treatments	:	 T1: Sucker treatment with talc formulation of Beauveria bassiana NBAIR Bb5a @ 20g/L + Soil drenching with NBAIR Bb5a @ 20g/L + Application of NBAIR Bb5a capsules in the leaf axils at 5,6 and 7 MAP + Application of NBAIR B5a capsules into the bore holes T2 : POP recommendation(application of Fipronil 0.3 G or Carbosulfan at 0, 3,and 5 months after planting T3: Control 				
Observations		No of plants showing symptom of weevil attack on pseudostem Yield per plot				

15.2 Evaluation of entomopthogens against banana rhizome weevil *Cosmopolites* sordidus (KAU Vellayani, KAU Kumarakoam)

Objective	To evaluate of entomopthogens against banana rhizome weevil Cosmopolites
	sordidus
Crop	Banana
Variety	Nendran

design of	RBD
experiment	
Treatment	3
Replications	7
Plot	50 m^2
size/Replication	
Major Pest	Banana rhizome weevil Cosmoplitus sordidus
Treatments	T1: Rhizome treatment with talc based <i>Metarhizium anisopliae</i> NBAIR Ma4 20g/L before planting + pit application of NBAIR Ma4 capsules @ 4 capsules per plant at 0, 3, 5, and 7 MAP T2: POP recommendation (Fipronil 0.3G @ 10g /plant at 0.2 and 5MAP) T3: control
Observations	No. of infested rhizomes per plot
	Yield per plot

16. Apple

16.1. Demonstration on management of apple root borer using *Metarhizium anisopliae* (YSPUHF Solan, SKUAST Srinagar)

Objective		To demonstrate the bioefficacyof <i>Metarhizium anisopliae</i> against apple root borer
	-	
Crop		Apple
Variety	:	Region specific recommended variety
Location		Kotkhai, Rohru and Kalpa blocks
Plot size/Area		5 ha
Treatment details		T1: Powder formulation of <i>Metarhizium anisopliae</i> NBAIR Ma 4 $(1x10^8)$
		spores/g) @ 30g per tree mixed with enriched FYM as soil application
		during July- August, i.e., at the time of emergence of new grubs)
		T2: POP Recommendation (Chlorpyriphos 20 EC @ 0.04%)
Observation to be		Number of live and dead larvae will be counted at the time of basin
recorded		preparation and percent mortality will be calculated

16.2. Demonstration of Biointensive pest management module for codling moth, *Cydiapomonella*infesting apple in Ladakh (SKUAST-K Srinagar)

Objective		To demonstrate the bioefficacy of Biointensive pest management module for the management of codling moth, infesting apple in Ladakh sucking pests in cotton
Сгор	:	Apple
Variety	:	Red delicious and others
Location	:	Nurla, Mingy and Saliskot Villages, Kargil &Leh (Ladakh)
Area		1 ha
Treatment	:	T1 :BIPM moduleThree sprays of Liquid formulation of <i>Bacillius thuringienis</i>

	 (Commercial formulation) @ 2 ml/ L Pheromone dispensers at the time of biofix Pheromone traps @ 20 traps/ ha for trapping male adults (SK-CM Lure, SKUAST-K Product) Pheromone traps @ 20 traps/ ha for trapping both male and female (SK-Combo Lure, SKUAST-K Product Cydia Granulosis virus, (CpGV) @ 1x10¹² OBs/ha Trunk banding with gunny material for 1 st generation summer larvae and another at pre-harvest of fruits for trapping overwintering larvae. T2: POP Recommendation (Chlorpyriphos 1 ml/L)
Observations	% fruit damage% reduction in damage over control
	YieldC:B ratio

PLANTATION CROPS

17. COCONUT

17.1 Area-wide demonstration of biological suppression of black headed caterpillar using *Goniozus nephantidis* and *Bracon brevicornis* (ICAR-CPCRI Kayankulum)

Objective		To demonstrate of the bioefficacy of parasitoids <i>Goniozus</i> <i>nephantidis</i> and <i>Bracon brevicornis</i> for the management of coconut black headed caterpillar
Crop		Coconut
Location	:	
Area		10 ha
Treatments	:	 T1: Augmentative release of <i>Goniozus nephantidis</i> and <i>Bracon brevicornis</i> @ 20 parasitoids/palm T2:POP Recommendation (Chlorantraniliprole 18.5 SC@ 0.4 ml/L)
Observations	:	Pest incidence/ leaflet, Infested leaflets in a frond, parasitism percentage, Pre-release and post-release data on pest incidence.

17.2 Area wide demonstration of an entomofungal pathogen *Metarhizium majus* for the management of coconut rhinoceros beetle (ICAR-CPCRI Kayankulum)

Objective		Area wide demonstration of an entomofungal pathogen <i>Metarhizium majus</i> for the management of coconut rhinoceros beetle
Crop		Coconut
Location	:	Vallikunnan Panchayat, Mavelikara
Area		1500 ha
Treatments	:	T1: <i>Metarhizium majus</i> CPCRI Mm 601) 5x10 ¹¹ spores m ⁻³ (5g/L)
		followed by in situ incorporation of Clerodendrum infortunatum
		along with crown cleaning and leaf axil filling with botanical

		cakes T2: POP Recommendation (Wooden ash 1kg/m ³ cowdung pit)
Observations	:	Pre-treatment and post-treatment pest incidence level (six- monthly interval) Palm health improvement

18. PLANT DISEASES EXPERIMENTS

18.1. Large scale demonstration of Pant Bioagent (PBAT-3) for the management of rice sheath blight (GBPUAT, Pantnagar, NCIPM New Delhi, PAU Ludhiana)

Objective	To demonstrate the Pant Bioagent (PBAT-3) for the management of rice				
	diseases				
Crop	Rice				
Variety	Region specific recommended variety				
Location	Udham Singh Nagar, Nainital District, Uttarakhand.				
Area	GBPUAT, Pantnagar- 200 ha				
	NCIPM New Delhi 2 ha				
Treatments	T1: PBAT -3 formulation				
	• Seed bio-priming through Pant Bioagent formulation, PBAT-3				
	(T.harzianumTh14 + Pseudomonas fluorescens Psf 173) @ 10g/kg of				
	seeds.				
	• Seedling dip with PBAT 3@ 10 g/ L for about 30 minutes.				
	• Two sprays of PBAT 3 @ 10 g/ L on standing crop (Tillering phase) at				
	10-12 days intervals				
	T2 : POP Recommendation (Carbendazim 2g/L drenching and spraying)				
Observations to	Disease incidence (Sheath blight)				
be recorded:	• Grain yield of crop (kg/ha)				
	• Cost-benefit ratio.				

18.2. Demonstration of the bioefficacy of *Trichoderma asperullum* KAU strain application for the management Fusarium wilt in cowpea (KAU, Kumarakoam, KAU Vellayani)

Objective		To demonstrate the bioefficacy of Trichoderma asperullum KAU strain
		application for the management Fusarium wilt in cowpea
Crop		Cowpea
Variety	:	Region specific recommended variety
Plot size		1 ha
/Replication		
Treatment details		T1: Talc based formulation of the <i>Trichoderma asperullum</i> KAU strain 2×10^6 spores @ 20 g kg ⁻¹ of seed + basal application (multiplied in cowdung + neemcake 9:1 ratio) @ 250 g /plant and soil drenching @20 g/L at 20,40 and 60 DAS T2: POP Recommendation (Seed treatment with carbendazim @ 2g kg ⁻¹ of seed followed by soil drenching @ 0.2 per cent at 15 DAS)

Observation to be recorded	 Disease incidence (%) at 30, 45, 60 DAS Shoot and root growth (in cm) Yield (kg/ha)
	C:B ratio`

18.3. Demonstration of the bioefficacy of *Trichoderma asperullum* for the management of Fusarium wilt and root rot of pea (Dr YSRUHF Solan, GBPUAT Pantnagar)

Objective		To demonstrate the bioefficacy of Trichoderma asperullum UHFTa1for		
		the management Fusarium wilt and root rot of pea		
Сгор		Pea		
Variety	:	Region specific recommended variety		
Plot		5 ha		
size/Replication				
Treatment details		T1: Talc based formulation of the Trichoderma asperullumUHFTa1		
		2×10^6 spores /g seed treatment @ 20 g kg ⁻¹ of seed + basal application		
		(multiplied in cowdung + neemcake 9:1 ratio) @ 50 g /plant and soil		
		drenching @20 g/L at 20,40 and 60 DAS		
		T2: POP Recommendation (Seed treatment with carbendazim @ 1g kg ⁻¹		
		of seed followed by soil drenching @ 0.2 per cent at 15 DAS)		
Observation to be		i) Disease incidence (%)		
recorded		ii) Shoot and root growth (in cm)		
		iii) Pod yield (kg/ha)		
		iv) C:B ratio		

18.4. Large scale demonstration of Pant Bioagent (PBAT-3) for the management of fusarial wilt of pea (GBPUAT, Pantnagar, Dr YSRUHF Solan)

Objective	Large scale demonstration of Pant Bioagent (PBAT-3) for the management of fusarial wilt of pea			
Crop	Pea			
Variety	Region specific recommended variety			
Location	Nainital District, Uttarakhand.			
Area	25 ha			
Treatments	T1: Seed bio-priming through Pant Bioagent formulation, PBAT-3 (T.			
	harzianumTh14 Pseudomonas fluorescens Psf 173) @ 10g/kg of seeds+			
	Soil application of PBAT @5 kg/ha +Spray of PBAT 3 @ 10 g/L on			
	standing crop at 10-12 days intervals			
	T2: POP Recommendation (carbaendazim Seed treatment @1g/kg and			
	drenching @1g/ L)			
Observations to	Disease incidence (wilt)			
be recorded:	• Grain yield of crop (kg/ha)			
	Cost-benefit ratio.			

18.5. Management of stem rot *Macrophominaphaseolina* in sesame using biocontrol agents (RARS, Anakapalle, SKUAST, Jammu)

Objective		To manage the stem rot Macrophomina phaseolina in sesame using			
_		biocontrol agents			
Crop		Sesame			
Variety	:	Regional specific recommended variety			
design of experiment		RBD			
Treatments		3			
Replications		7			
Plot		40 m^2			
size/Replication					
Treatment details		T1: Pseudomonas fluorescens NBAIR-PFDWD soil application @ 5			
		kg/ha			
		T2: POP Recommendation(Carbendazim seed treatment @1g/kg seed +			
		carbendazim soil drenching @ 1g/L)			
		T3: Untreated Control			
Observation to be		Germination (%)			
recorded		• Root and shoot length (in cm)			
		• Stem rot incidence (%) at 30 and 60 days after sowing			
		• Grain yield (kg/ha)			
		• C:B ratio			

18.6. Evaluation of biocontrol agents against sugarcane red rot, smut and wilt (Centre: SBI, Coimbatore, MPKV Pune)

Objective		To evaluate the biocontrol agents sugarcane red rot, smut and wilt	
Crop		Sugarcane	
Variety	:	Region specific recommended variety	
design of		RBD	
experiment		KDD	
Treatments		3	
Replications		7	
Plot		50 m ²	
size/Replication			
Treatment details		T1:Mechanized sett treatment+ soil application of (45 & 90 DAP with	
		Paenibacillus alvei AFG 3 + T. harzianum SBI T20	
		T2: POP Recommendation (Azoxystrobin 23 SC 0.5 ml/L)	
		T3:Control	
		Liquid formulations of the bioagents 2×10^6 spores/ml and fungicide will	
		be applied as sett treatment using sett treatment device developed at Plant	
		Pathology Lab, Sugarcane Breeding Institute	
Observation to be		• Per cent germination (30DAP)	
recorded		• Per cent Disease incidence (45DAP, 60DAP, 90DAP)	
		• No. of healthy shoots/ stalks (120DAP, 180DAP, 240DAP)	
		• Yield (kg/ha)	

•	C:B ratio

18.7. Evaluation of microbial antagonists for the management of ginger rhizome rot (CAU, Pasighat, AAU Jorhat)

Objective		To evaluate the microbial antagonists for the management of ginger
		rot disease
Crop		Ginger
Variety	:	Region specific recommended variety
design of		RBD
experiment		
Treatments		3
Replications		7
Plot		50m ²
size/Replication		
Treatment details		T1: Powder formulation of <i>Trichoderma harzianum</i> AAU-MC2:Rhizome treatment (@ 20 g kg ⁻¹ +basal application (multiplied in cowdung + neemcake 9:1 ratio) @ 100 g /plant and soil drenching @20 g/L at 10,20 and 40 DAP T2: POP Recommendation (Copper hydroxide soil drenching @2g/L) T3: Control
Observation to be recorded		Disease incidence during cropping stage Disease incidence after harvest Yield data (Kg/ha) C:B ratio

Foumulation of technical programme (2022 to 2025)

Ongoing Experiments

I. BIODIVERSITY OF BIOCONTROL AGENTS FROM VARIOUS AGRO-ECOLOGICAL ZONES

Objectives: To study the diversity of natural enemies of insect pests and plant pathogens crops in different agro-ecological zones catered by the all the AICRP centers.

II. SURVEILLANCE FOR PEST OUTBREAK AND ALIEN INVASIVE PESTS

III.

Name of the study/trial	:	Surveillance for pest outbreak and alien invasive pests - Crop Pest Outbreak Report (CPOR)
Objectives	:	To monitor and report the incidence, buildup and outbreaks of insects and diseases of different crops in the region catered by the AICRP center.
Trial allotted centers	:	All Centres
Method	:	Visit, survey and surveillance and interaction with state/line department officials and local farmers.
Periodicity	:	Once in a month.
Target area	:	Covering the district where centre is located and 2-3
		adjoining districts. In case of pest outbreaks, affected area may be specifically visited.
Desirable importan t information	:	 Specific site & date visited-District, Mandal (Taluk), village (Give specific GPS coordinates, if available). Area covered in ha No. of crops specifically examined and Variety grown Major insects and disease (s) noticed and natural enemy occurrence Severity of damage (low, moderate, severe) Age of crop in severely damaged field(s) (in DAT/DAS and years for field and tree/ horticultural crops, respectively) Previous crop grown in the area Occurrence of the pest in weeds in surrounding area of the crop Plant protection measures adopted by the farmer prior to the visit Advice given to the farmer and follow up report if any

Crop Pest Outbreak Report Proforma

Name of Centre:

Date visited:

1.	Site details	Village(s)	with	GPS	Co-ordinates,	Mandal/Taluk/
		District				

2.	Crop details	Crop*: Variety : Age of Crop (DAS/DAT/: Years in case of perennial crop: Area cultivated (ha) :
3.	Pest Scenario: Insects Natural enemy occurrence	Name of Insect: Level of infestation: Low/Moderate/Severe Predators: (Coccinellids/ Chrysopids/Spiders/Others) Parasitoids:
4.	Disease Scenario	Name of Disease: Per cent disease incidence:
5	Previous crop grown in the area	
6	Occurrence of the pest in weeds (identification where possible)in surrounding area of the crop	
7	Plant Protection measures followed by the farmer	
8	Advice given to the farmer	
9	Sender's name	

*for each crop separate proforma to be used

For each insect, level of infestation, viz., Low/Moderate/Severe should be specified,

- Low-Pest is present at lower population with no significant damage to the crop
- **Moderate**-Pest population is nearing Economic Threshold Level (ETL) and needs constant monitoring to prevent economic damage
- Severe -Pest damage is higher and the crop needs control measure to avoid crop losses Submission of report
- As early as possible by e-mail <u>(aicrp.nbaii@gmail.com)</u>, but not later than 5th of each month.
- Send the insects and its natural enemies including spiders if any, desired for identification to the Director, ICAR-NBAIR, H A Farm Post, P B No 2491, Bellary Road, Hebbal, Bengaluru 560024.
- Photographs of the insect and disease damage symptoms, life stages of insects, natural enemies and field visits (wherever possible) should be sent along with this report.
- In case of no pest outbreak in the centres for the reporting period, Nil report should be sent.

Cropwise Programme

CEREALS

1. RICE

1.1. Evaluation of entomopathogens against sucking pests of rice (Rice bug *L.acuta*, and Green leafhopper and Plant hopper (*Sogatella* sp))MPKV Pune; ICAR-IIRR Hyderabad)

Objective		To evaluate the entomopathogens against sucking pests of rice	
Crop		Rice	
Variety	:	Regional specific recommended variety	
Treatments		5	
Replications	:	4	
Design of	:	RBD	
experiment			
Plot		$40m^2$	
size/Replication			
Date of sowing	:	: As per the package of practice	
Treatments	:	T1- Lecanicillium saksenae KAU ITCC7714 (1x10 ⁸ spores/g) @ 5 g/l	
		T2- Beauveria bassiana NBAIR Bb 5a (1x10 ⁸ spores/g) @ 5 g/l	
		T3- POP of university (Thiamethoxam 0.2 g/L)	
		T4- Untreated	
		First spray at panicle initiation and second spray two weeks after the	
		first spray.	
Observations	:	The population of bug and plant hoppers and leafhopper will be recorded from 25 hills selected at random at weekly interval starting from 20 days after transplanting	

1.2. Field evaluation of entomopathogens and plant growth promoting bacteria against Rice stem borer, Leaf folder, Brown planthopper (ICAR-NRRI, Cuttack; TNAU-TRRI Aduthurai; UASRaichur;ICAR-IIRR Hyderabad)

Objective		To evaluate the entomopathogens against rice stem borer, leaf folder,			
		Brown planthopper			
		Suggestion: Actual species name for stem borer to be mention in the			
		report.			
Crop		Rice			
Variety	:	Region specific recommended variety			
Design of	:	RBD			
experiment					
Treatments	:	4			
Replications		6			
Plot		40 m^2			
size/Replication					
Treatments	:				
		T1. Bacillus albus NBAIR BATP (1 x 10 ⁸ cfu/ml) 10ml/L			
		T2. Bacillus thuringiensis NRRI BtBiocb 7 (1 x 10 ⁸ cfu/ml) 10ml/L			
		T3. POP of University (Thiamethoxam 0.2 g/L)			
		T4.Control (Untreated)			
		Three rounds of foliar sprays of liquid formulations of entomopathogens			
		has to be given at 14 days' interval			
Observations	:	• Mean No. of dead heart/white ear/sq. m. (weekly intervals)			
		• Mean No. of damaged leaves per sq. m. (weekly intervals)			

• The population of plant hoppers will be recorded from 25 hills selected at random at weekly interval starting from 30 days after transplanting (DAT) from each plot.
• The population of predators will be also recorded at weekly intervals.
• Growth promotion character viz., plant height (cm), biomass (gm)
• Yield (kg/plot)

1.3 Management of rice stem borer and leaf-folder using entomopathogens (KAU Thrissur)

Objective		To evaluate entomopathogens against stem borer and leaf folder in rice				
Crop		Rice				
Variety	:	Jyothi				
Design of	:	RBD				
experiment						
Treatments	:	5				
Replications		4				
Plot		40 m^2				
size/Replication						
Treatments	:	T ₁ : <i>Heterorhabditis indica</i> NBAIR strain@ $1.2x10^9$ IJs ha ⁻¹				
		T ₂ :Bacillus thuringiensis NBAIR BtG4 10 ml/L				
		T ₃ : <i>Beauveria bassiana</i> NBAIR Bb5a (1x10 ⁸ spores/g) @ 5 g/l				
		T ₄ : POP Recommendation (Flubendiamide (formulation 20 % WG)				
		25g.a.i.ha ⁻¹				
		T ₅ : Untreated control				
		Treatments will be applied twice based on ETL				
Observations	:	• Mean No. of dead heart/white ear/sq. m.				
		• Mean No. of rolled leaves per sq. m.				
		• Yield kg/plot				

1.4. Large scale demonstration of bio-intensive pest management on rice

(KAU Thrissur; PAU Ludhiana; OUAT Bhubaneswar; RARS Anakapalle; AAU Jorhat; IGKV Raipur;ICAR-NCIPM New Delhi;ICAR-IIRR Hyderabad; UBKV Pundibari; CAU Pasighat)

Objective		To demonstrate the bio-intensive pest management on rice
Сгор		Rice
Variety	:	Region specific popular rice variety
Location		Farmersfields
Plot size/ Area		KAU Thrissur(150 ha), PAU(50 ha), OUAT(10 ha), RARS
		Anakapalle(30 ha), AAU Jorhat (50 ha); IGKV (5ha), ICAR-
		NCIPM (1ha), IIRR (3 ha), UBKV Pundibari (3 ha)
Treatments	:	T1 = BIPM Package
		• Seed bio-priming with Pseudomonas fluorescens
		10g/L
		• Seedling root dip with <i>Pseudomonas fluorescens</i> @10
		g/L for 1hour before transplanting
		• Need based application of azadirachtin 1500 ppm@

	 @5g/kg for sucking pest Two sprays of <i>Pseudo</i> against foliar diseases at after transplanting. Releases of <i>Trich</i> <i>Trichogramma japonicu</i> to be made during sease 	<i>ma</i> NBAIR Bb 5a foliar spray s. <i>pmonas fluorescens</i> @ 10g/L fter transplanting and 20 days <i>togramma chilonis</i> and <i>m</i> @ 100,000/ha (5-6 releases on) at 7 days interval starting prer and leaf folder infestation
Observations	parameters (number of tiller fresh and dry weigh of root a Observations on pest incider will be recorded on total of hills in FP block at vegetati dead heart and leaf folder stage (for white ear damage). Observations on natural ener parasitoids by visual or swee of egg masses for stem borer At each observation, record t leaves, damaged leaves, total ear heads and number of plan	the as well as natural enemies 50 hills in BIPM block & 50 ve stage (45 and 60 DAT for damage) and at reproductive hies like predators and p net count and by collection total tillers, dead hearts, total panicle bearing tillers, white ht hoppers/ hill ces of 5x5 m area from each

2. MAIZE

2.1. Large scale demonstration of *Trichogramma chilonis* against maize stem borer *Chilo partellus* (MPUAT Udaipur and UAHS Shivamogga)

Objective		To demonstrate the bioefficacy of <i>Trichogramma chilonis</i> against maize stem borer <i>Chilo partellus</i>
Сгор		Maize
Variety	:	Location specific recommended variety
Area		MPUAT Udaipur (2 ha) UAHS Shivamogga (4 ha)
Locations		
Treatments	:	 T1: Three releases of <i>Trichogramma chilonis</i> @ 100,000/ha/release at 15, 22 and 29 days after crop germination. T2: POP recommendation(Quinolphos 25EC 2ml/L)

Observations	 Dead hearts from 20 randomly selected plants at 30 DAS Yield (t/ha) and incremental benefit cost ratio
	Percent parasitism

3. MUSTARD

3.1 Evaluation of entomopathogens against mustard aphid (SKUAST-K Srinagar; SKUAST- Jammu; CAU Pasighat)

Objective		To evaluate the entomopathogens against mustard aphid
Сгор		Mustard
Variety		Regional specific recommended variety
Design of experiment		RBD
Treatments	:	7
Replications	:	3
Plot Size/Replication	:	$40 \text{ m}^2/\text{plot}$
Treatment Details		T1- Beauveria bassiana NBAIR Bb 5a (1×10^8 spores/g) @ 5g/L +
		Azadirachtin 1500 ppm @ 2 ml/L
		T2- POP recommendation (Imidacloprid 17.8 SL @ 0.4ml/L)
		T3- Control
		Spray schedule: Two sprays at 15 days interval when the pest reaches
		ET
Observations	:	No. of aphids per 10 cm twig from ten randomly selected plants
		No. of Coccinellids per five plants
		Seed Yield

4. COTTON

4.1.Evaluation of efficacy of entomofungalpathogens for the management of sucking pests in cotton(UAS Raichur; TNAU Coimbatore; AAU Anand ANGRAU Anakapalle; PJTSAU Hyderabad; PDKV Akola)

Objective		To evaluate the efficacy of entomofungal pathogens for the management
		of sucking pests in cotton
Crop		Cotton
Design of experiment		RBD
Treatments	:	3
Replications	:	7
Plot Size	:	400 m^2
/Replication		
Variety		Region specific recommended variety
Treatment Details		T1: Powder formulation <i>Lecanicillium lecanii</i> NBAIRV18 (1x10 ⁸ spores
		/g) @ 5 g/l
		T2: POP Recommendation (biorational insecticide i.eSpiromesifen
		240SC @ 7 ml/10 L)
		T3: Control

		Two sprays will be given at 15 days interval soon after the incidence starts
Observations	:	 Aphids, Jassids, whiteflies and thrips / 3 leaves (top, middle and lower canopy) in 5 randomly selected plants in each plot will be recorded before spray, 3 and 7 days after spray will be recorded. Cadavers without apparent sporulation along with leaves will be brought in the laboratory and incubated under optimal condition. After 5 days cadavers will be observed for signs of fungal infection and sporulation. Yield (Q/ha)

4.2 Large scale evaluation of biointensive management of pink bollworm on *Bt* cotton (UAS Raichur; TNAU Coimbatore; AAU Anand, PJTSAU Hyderabad; PAU Ludhiana)

Objective	To evaluate bio-intensive module for the management of pink bollworm in Bt cotton
Crop	Cotton
Variety	Region specific recommended variety
Design of	RBD
experiment	
Treatments	3
Replication	10
Plot size / Area	400 m^2
Treatment details	 T1: Standard practice of plant protection till 55th day or appearance of PBW. The following inputs to be provided for PBW. Timely sowing (upto Mid-May) Erection of pheromone traps (Funnel type) @ 2 trap/ acre for Monitoring and 20 trap/acre for Mass trapping Releases of <i>Trichogrammatoidea bactrae</i> 100,000/ha, five releases starting from 55 days after germination (Two release at flowering time and third release at boll formation stage Application of azadirachtin 1500 ppm @ 2ml/L of water T2: POP recommendation (Lambda-cyhalothrin/ Profenophos 50EC 2ml/L) T3: Control Note: Isolation distance of 100m should be maintained if Trichogramma is used in the experiment.

5. SUGARCANE

5.1. Large scale demonstrations of *Trichogramma* spp. (ICAR-NBAIR HTTS) against borers (early shootborer, top borer and stalk borer) in sugarcane (PAU Ludhiana; OAUT Bhubaneswar; UAS Raichur)

Objective	To demonstrate the bioefficacy of <i>Trichogramma</i> spp. against sugarcane borers
Crop	Sugarcane
Variety	: Location specific recommended variety
Plot size/ Area	PAU Ludhiana (2000 ha)
	OUAT Bhubaneswar (20 ha)
	UAS Raichur (20 ha)
Treatment	 T1: Eight releases of <i>T. chilonis</i> @ 50,000/ha at weekly interval from mid-April to end-June (for early shoot borer, <i>Chilo infuscatellus</i> Eight releases of <i>T. japonicum</i> @ 50,000/ha at weekly interval from mid-April to end-June (for top borer, <i>Scirpophaga excerptalis</i>) 10-12 releases of <i>T. chilonis</i> @ 50,000/ha at weekly interval from July to October (for stalk borer, <i>Chilo auricilius</i>) T2: POP Recommendation (Chlorantraniliuprole 18.5 SC 375 ml /ha)
Observations	 Pre-release infestation, <i>i.e.</i>, per cent dead hearts due to early shoot borer and top borer Post-release count of percent dead hearts at fortnight interval up to 3 months Per cent cane attacked at harvest Cane yield data Incremental benefit cost ratio

6. TOMATO

6.1 Demonstration of bio intensive pest management practices for the management of insect pests (fruit borer/pinworm/ sucking pests) of tomato (UBKV Pundibari; YSPUHF Solan; MPUAT Udaipur; SKUAST-K Srinagar; CAUPasighat; AAU Jorhat; PJTSAU Hyderabad)

Objective		To demonstrate the efficacy of bio intensive pest management practices for the management of insect pests (fruit borer/pinworm/ sucking pests) of tomato	
Сгор		Tomato	
Variety	:	Location specific popular variety	
Location		Farmers fields	
Plot size/ Area	:	5 ha	
Treatment	:	T1:BIPM Module	
		• Spraying of <i>Lecanicillium lecanii</i> NBAIR VI-8	
		$(1 \times 10^8$ spores/g) @ 5g/L and installation of yellow sticky	
		trap @50 number/ha for sucking pests	
		• Installation of Pheromone traps @ 20/ha against fruit borer and pinworm (NBAIR Product)	
		• Release of <i>Trichogramma chilonis</i> @ 50,000/ha per release	

Methodology and observations	 (6 releases) from flower initiation stage at weekly intervals for fruit borer <i>Trichogramma achaeae</i> @ 50,000/ ha per release (6 releases) for pinworm Spraying of Azadirachtin 1500 ppm @ 2 ml/lit T2: POP Recommendation The treatment applications will be started at initial occurrence of fruit borer/pinworm. Six releases of parasitoids at weekly interval and three sprays of biopesticides will be given during evening hours at fortnightly interval. Randomly select 10 plants/40m² crop area and observe all the leaves for presence of leaf mine / sucking pests caused by the larva. Randomly select 10 plants/ 40m² crop area and observe all the fruits for presence of holes/ damage caused by the larva. Sucking pests if any, data will be recorded as per standard protocol Fruit damage percentage and yield will be recorded
---------------------------------	--

7. BRINJAL

7.1 Evaluation of entomopathogens against *Myllocerous subfasciatus* on brinjal (ICAR-IIHR Bengaluru, CAU Pasighat)

Objective		To evaluate the entomopathogens against <i>Myllocerous subfasciatus</i> on brinjal
Сгор		Brinjal
Design of experiment	1	RBD
Treatments		7
Replication		5
Variety	:	Location specific popular variety
Plot size/Replication	:	40 m^2
Treatments	:	 T1: <i>Metarhizium anisopliae</i> IIHR Strain oil formulation (1x10⁸ spores/ml) @5 ml/L T2: <i>Beauveria bassiana</i> IIHR Strain (1x10⁸ spores/g)WP formulation @5 g/L T3: <i>Metarhizium anisopliae</i> NBAIR Ma4 (1x10⁸ spores /g) WP formulation @5 g/L @ 5g/L T4: <i>Beauveria bassiana</i>NBAIR Bb-5a (1x10⁸ spores /g) WP formulation @5 g/L T5: <i>Heterorhabditis indica</i> NBAIR H38@ 2.5 10⁹ IJs ha⁻¹ T6: POP recommendation (Chlorpyriphos 2 ml /L)

		T7: Untreated control
Observations	:	Pre and post treatment infestation at fortnightly interval.
		Destructive sampling may be done to count the grubs
		Yield of healthy marketable fruits and cost-benefit ratio.

7.2 Demonstration of bio intensive management practices for the management of pests (fruit borer/ sucking pests) of Brinjal (KAU Vellayani; KAU Kumarakoam; AAU Anand; OUAT, Bhubaneswar; TNAU Coimbatore; PJTSAU, Hyderabad; CAU Pasighat)

Objective	To demonstrate the efficacy of bio intensive management
	practices for the management of insect pests of brinjal
Crop	Brinjal
Variety	: Location specific popular variety
Location	
Plot size/ Area	: 3 ha (KAU Vellayani& KAU Kumarakoam: 0.5 acre)
Treatment	: T1:BIPM Module
	• Use of pheromone traps for mass trapping @30/ha against fruit borer (Sun Agro's product)
	• Release of Trichogramma chilonis @ 100,000/release
	against brinjal fruit and shoot borer, 10-12 releases to be
	made at 30 days after transplanting & need based spray of Bacillus thuringiensis (NBAIRBtG4) 2ml/L
	• Lecanicillium lecaniiVl 8(1 x 10 ⁸ spores/ ml @ 5g/L) for sucking pests.
	 Heterorhabditis indica NBAIR H38@ 2.5 10⁹ IJs ha⁻¹
	T2 = POP Recommendation
	The treatments will be imposed at initial occurrence of fruit
	borer/sucking pests. 10 to 12 releases of parasitoids at weekly
	interval and three sprays of biopesticides will be given during
	evening hours at fortnightly interval.
Methodology and	: For Brinjal fruit and shoot borer
observations	• Pre-release observation –No. of shoots damaged. For this, ten plants from each replication will be selected, tagged and observation will be taken at 15 days interval.
	• Observations such as number of damaged fruits, weight of damaged fruits, number of total fruits and weight of total fruits from each plot will be taken to calculate the per cent
	infestation. Observation will be recorded at 5 days interval. For sucking pests:
	• Pre-treatment observations on no. of nymphs and adults
	of sucking pests (mealybug/whitefly) per leaf will be taken before application of the treatment, and post-treatment
	observations will be taken at 5, 10 and 15 days after each
	treatment (DAT). Observations of sucking pest population
	(no. of nymphs and adults per leaf) will be recorded on
	leaves from the top, middle and bottom of 10 randomly
	selected plants per treatment.

• Yield of healthy marketable fruits and cost benefit ratio
will be worked out.

8. OKRA

8.1. Demonstration of bio-intensive management practices for the management of pests in okra (IGKV Raipur; CAU Pasighat; ICAR-IIHR Bengaluru)

Objective	To demonstrate the BIPM practices against pests of Okra
Crop	Okra
Variety	: Region specific recommended variety
Location	
Area	2.5 ha
Treatments	: T1: BIPM
	 Installation of pheromone trap for <i>Helicoverpa armigera & Earias vittella</i>@ 30 traps/ha at 30 DAS. Yellow sticky traps @20/ha for maintaining of sucking pests. Six releases of <i>Trichogramma chilonis</i>@ 50000/ ha at weekly interval with the initiation of pest. Two sprays of <i>Bacillus thuringiensis</i> NBAIR BTG4 (2x10⁸cfu/g) 1% WP 10g/L. First spray with the initiation of lepidopteran pest and subsequent spray at ten days interval One spray of Azadirachtin 1500 ppm (1% EC) @ 2ml/L with the initiation of sucking pest and subsequent spray with <i>Lecanicillium lecanii</i>NBAIR VI-8 (1x10⁸cfu/g) 1% WP (5g/L) at ten days interval. T2: POP Recommendation
Observations	 Catches of <i>Helicoverpa armigera</i> and <i>Earias vittella</i>in pheromone trap will be recorded at weekly interval from the installation of pheromone trap. The observations on larval population of <i>H. armigera</i> and <i>E. vittella</i>will be recorded from ten randomly selected plants per repetition at weekly interval with the initiation of pest. The observations on sucking pest population will be recorded from three leaves (upper, middle and lower) of ten randomly selected plants per repetition at weekly interval with the initiation of pest. Natural enemies: The population of natural enemies will be recorded from 10 plants of each quadrate at 15 days interval Fruit damage (%) - The observations on fruit damage on number and weight basis will be recorded from each treatment at each picking. Fruit yield (healthy marketable fruit) q/ha C:B ratio

9. CHILLI

9.1 Evaluation of entomopathogens against sucking pests of chilli (thrips, aphids and Whitefly) of chilli) (ICAR-IIHR Bengaluru; UAS Raichur; MPKV Pune; PJTSAU Hyderabad, HRS Ambajipetta; CAU Pasighat)

Objective		To avaluate of antomonothe going against avaluing nexts of shill					
Objective		To evaluate of entomopathogens against sucking pests of chilli					
Crop		Chilli					
Pest		Sucking pests					
Variety	•••	Region specific recommended variety					
Treatments		4					
Replications		5					
Plot size /	:	30 m^2					
Replication							
Treatments	:	T1: Oil based formulation of <i>M. anisopliae</i> IIHR Strain $(1x10^8 \text{ spores/g})@5\text{ml/L}$					
		T2: Powder formulation <i>Beauveria bassiana</i> NBAIR Bb5a (1x10 ⁸ spores/g) @5 g/ L					
		T3: POP Recommendation (Imidacloprid @0.3ml/L) T4:Control					
		Five rounds of spray at weekly intervals starts a five days after transplanting					
Methods	:	• Population of white fly, aphids and thrips a day before application and					
and		3 rd , 7 th day after application. (4 leaves/plant)					
observations		• Record hopper damage symptoms and ChLCVincidence.					
		• Marketable Yield at harvest replication wise in each treatment					

10. CABBAGE

10.1 Evaluation of Biointensive management practices for the cabbage pests (aphids *Brevicoryne* spp. / *Myzus* spp. and Diamond back moth, *Plutella xylostella*)(MPKV Pune; CAU Pasighat)

Objective		To evaluate theBiointensive management practices for cabbage pests
		(Sucking pests and DBM)_
Crop		Cabbage
Pest		Aphid and Diamond back moth
Variety	:	Region specific recommended variety
Design of		RBD
experiment		
Treatments		3
Replications		7
Plot size /	:	100 m ²
Replication		
Treatments	:	T1 : BIPM
		• Growing Indian bold seed mustard as trap crop @25:2
		• Installation of pheromone trap for <i>Plutella xylostella</i> @ 12 traps/ha at
		30 DAT
		• Eight releases of Trichogramma chilonis@ 100000/ ha at weekly

		interval with the initiation of pest			
		 Two sprays of <i>Bacillus thuringiensis</i> NBAIR BTG4 (2×10⁸cfu/g) 1% WP (5g/ L). First spray with the initiation of lepidopteran pest and subsequent spray at ten days interval One spray of azadirachtin 1500 ppm (1%EC) (2ml/L) with the initiation of sucking pest/aphid and subsequent two sprays with <i>Lecanicillium lecanii</i>NBAIR VI-8 (1×10⁸cfu/g) 1% WP (5g/L) at ten days interval. T2: POP Recommendation (Spraying 5% NSKE) T3: Control 			
Observations	:	Catches of <i>Plutella xylostella</i> in pheromone trap will be recorded at weekly			
		interval from the installation of pheromone trap.			
		The observations on larval population/plant of lepidopteran pest will be			
		recorded from ten randomly selected plants per repetition at weekly interval with the initiation of pest.			
		The observations on aphid population/plant will be recorded from ten			
		randomly selected plants per repetition at weekly interval with the initiation			
		of pest.			
		Fruit damage (%) - The observations on fruit damage on number basis will be			
		recorded from each treatment at each picking.			
		Yield (healthy marketable cabbage heads) q/ha			
		C: B ratio			

11. CITRUS

11.1. Evaluation of entomopathogens against citrus thrips and green mites (rust and green mites) (CRS Tirupati)

Objective		To evaluate entomopathogens against citrus thrips and mites
Crop		Citrus
Variety	:	Sathugudi
Design	:	RBD
Treatments	:	3
Replications		7
Plot size		50 m^2
Treatments	:	 T1: Beauveria bassiana NBAIRBb5a (1×10⁸ spores/g) @ 5.0 g/L T2: POP Recommendation (Acephate 75 <u>SP@0.1%)</u> T3: Control Spray should be initiated immediately after fruit set (10 days after flowering). First spray at the peak activity of the pest and second at 14 days after first spray
Observations	:	The per cent leaf infestation due to thrips on foliage at 0 days (pre count) and 3, 7 and 14 days after second spray and for fruits, the percent infested fruits will be counted. The population counts of mitesbefore and 3, 7 and 14 days after treatmentwill be recorded. In case of rust mites, observation on infested fruits (%) before harvest will be noted The yield data (tonnes/ha.)

12. LITCHI

12.1 Bio-intensive pest management practices for the management of Litchi fruit borer, *Conopomorpha sinensis* in litchi (PAU ludhiana)

Objective		To evaluate the Bio-intensive pest management practices for the management of Litchi fruit borer		
Сгор	:	Litchi		
Variety		Region specific recommended variety		
design of experiment		RBD		
Treatments		3		
Replications		7		
Plot size/ Replication		100 m ²		
Pest	:	Litchi fruit borer		
Treatments		T1: BIPM		
	:	 Ploughing in orchard during March-April Regular clean cultivation throughout the year Regular collection and destruction of fallen infested fruits during May-June Light trap @ 1 per acre Releases of <i>Trichogramma embryophagum</i> @ 4000 parasitized eggs per tree 5-7 times at 7-10 days interval starting from initiation of flowering to colour break stage T2: POP Recommendation (T3: Untreated control 		
Observations		Total and infested fruits from 5 trees in each unit to work out per cent damage Marketable yield		

13. COCONUT

13.1. Biological suppression of rugose spiralling and nesting whiteflies on coconut (CPCRI Kayankulum, DRYSRHU HRS Ambajipetta, UBKV Pundibari)

Objective		To suppress rugose spiralling and nesting whiteflies on coconut
Сгор		Coconut
Design of experiment		RBD
Treatments	:	3
Replications	:	7
Plot Size/Replication	:	4palms for each replication
Variety		Region specific recommended variety
Treatment Details		 T1: Foliar application of <i>Isaria fumosorosea</i> (Pfu-5) 1 x10⁸ spores/ml (5 gm /L) plus Tween 80 1 ml/L (two spray at 15 days interval) T2: POP Recommendation (Neem oil 0.5% plus 0.005% soap powder)

	T3: Control (Two sprays at 15 days intervals).

13.2 Large scale suppression of coconut rugose spiralling whitefly using parasitoid *Encarsia guadeloupae* and *Apertochyrsa astur* (TNAUCoimbatore)

Objective		To suppresscoconut rugose spiralling whitefly
Crop		Coconut
Variety		Region specific recommended variety
Pest		Rugose spiralling whitefly
Location	:	Chinnapampalayam
Area		25 ha
Treatments	:	T1: <i>Encarsia guadeloupae</i> natural conservation + release of <i>Apertochyrsa astur</i> eggs @1000/ha + yellow sticky traps @ 20/ha T2:POPRecommendation(Neem oil 0.5% plus 0.005% soap powder)

13.3 Large scale demonstration on management of coconut rugose spiralling whitefly using entomofungal pathogen, *Isaria fumosorosea* (ANGRAU Anakapalle)

Objective		To demonstrate the bioefficacy of entomofungal pathogen Isaria		
		<i>fumosorosea</i> for the management of rugose spiralling whitefly on		
		coconut		
Crop		Coconut		
Location	:	Farmers fields in Srikakulam, Vizianagaram districts		
Area		40 ha		
Treatments	:	T1: Spraying Isaria fumosorosea (Pfu-5) @ 1 x10 ⁸ spores/ml (5 ml		
		/L)		
		Three sprays at 15 days interval covering the entire leaflet, fronds and directed lower side of leaves.		
		T2 POP Recommendation(Neem oil 0.5% plus 0.005% soap		
		powder)		
Observations	:	Palm infestation :		
		Pre (one day before) and post treatment count on 7 and 14 days		
		after treatment:		
		1. Percentage of leaves infested/palm (no. of leaves infested by		
		RSW /total leaf per palm),		
		2. Intensity of pest damage from 10 infested leaflet/fronds per palm		
		from the outer/middle whorl representing four directions (no. of		
		leaflets infested by RSW/ total leaflets per leaf)		
		3. Ten leaflets from each palm for assessment live colonies		
		(Low: 0-10 live egg spiral or adult/leaflet; Medium: 11-20 live egg		
		spiral or adults/leaflet; Severe: more than 20 egg spirals or adults		
		/leaflets), pest stages.		
		Isaria infection can be observed on eggs, nymphs, adults:		
		Mycelial growth on eggs (shrunken egg, dark brownish egg),		
		nymphs (reddish spot, shrinken body, turn into pale yellowish brownish over the time) and on adults (mummified adults; nawly		
		brownish over the time) and on adults (mummified adults: newly		
		emerged adults unable to expand the wings, fly).		
		Natural parasitism by <i>Encarsia guadeloupae</i> may be also observed		

14. PLANT DISEASES EXPERIMENTS

14.1 Evaluation of antagonistic microbes against brown spot, blast and sheath blight of rice (Centres: ICAR-NRRI Cuttack; AAU Anand; AAU Jorhat; PAU Ludhiana; UAS Raichur)

Objective		To evaluate the antagonistic microbes against brown spot, blast and sheath blight frice	
Crop		Rice	
Variety	:	Region specific recommended variety	
design of experiment		RBD	
Treatments		3	
Replications		7	
Plot size		$50m^2$	
/Replication			
Treatment details		 T1: <i>Pseudomonas fluoresens</i> NBAIR PFDWD (Seed treatment @10 g/litre +Seedling dip @ 10 gm / litre+ Foliar spray @ 10 gm/litre on standing crop at 10 days interval, i.e. 40, 50, 60 and 70 days after transplanting (DAT). T2: <i>Bacillus amyloliquefaciens</i> NRRI BS-5 (Seed treatment @10 g/litre +Seedling dip @ 10 gm / litre+ Foliar spray @ 10 gm/litre on standing crop at 10 days interval, i.e. 40, 50, 60 and 70 days after transplanting (DAT). T3:POP Recommendation (Application of Tebuconazole 50%+ Trifloxystrobin 25 %((75% WG) 1g/L T4: Untreated control 	
		 Per cent disease index (PDI) Shoot and root growth (in cm) Grain yield (Kg/ha) C:B ratio 	

14.2. Evaluation of *Bacillus subtilis* TNAU BS1 against major diseases of rice (Blast and brown spot) (TNAU Coimbatore)

Objective		To evaluate the Bacillus subtilis TNAU BS1 against major diseases of rice
Crop		Rice
Variety	:	Region specific recommended variety
Design of	:	RBD
experiment		
Treatments	:	3
Replications		7
Plot		50 m^2
size/Replication		

Treatments	:	T1-Bacillus subtilis TNAU BS1 (Seed treatment (10g/kg) + soil	
		application @ 5 kg/ha+ Foliar spray @10 g/L)	
		T1-Bacillus subtilis NBAIR BS1 (Seed treatment (10g/kg) + soil	
		application @ 5 kg/ha+ Foliar spray @10 g/L)	
		T3-POP Recommendation(Application of Tebuconazole 50%+	
		Trifloxystrobin 25 % (75% WG) 1g/L	
		T3 – Control	
Observations	:	Disease incidence	
		• Shoot and root growth	
		• Grain yield (Kg/ha)	
		• C:B ratio	

14.3. Large scale demonstration of Plant Bioagent (PBAT-3) for the management of root rot complex disease of tomato (GBPUAT, Pantnagar, IGKV Raipur)

Objective	Large scale demonstration of Plant Bioagent (PBAT-3) for the management of root rot complex of tomato	
Crop	Tomato	
Variety	Region specific recommended variety	
Location	Golapar area, Nainital district, Uttarakhand	
Area	25 ha	
Treatments	 T1:PBAT -3 formulation Seed bio-priming through Pant Bioagent formulation, PBAT-3 (<i>T. harzianum</i> Th14 + <i>Pseudomonas fluorescens</i> Psf 173) @ 10g/kg of seeds. Seedling dip with PBAT 3@ 10 g/ L for about 30 minutes. Two sprays of PBAT 3 @ 10 g/ L on standing crop (Tillering phase) at 10-12 days intervals T2:POP Recommendation (Carbendazim drenching @1g/L) 	
Observations	Disease incidence (root rot complex)	
to be	• Grain yield of crop (kg/ha)	
recorded:	• Cost-benefit ratio.	

Programme Shedule

	Day 1 October 20, 2022 (Thursday)		
09.30-10.00	Registration		
10.00-11.15	Inaugural Session		
10.00- 10.05	ICAR Song		
10.05-10.10	Lighting of lamp		
10.10-10.25	Welcome & Project Coordinator's report by Project	Dr. S. N. Sushil	
	Coordinator, AICRP-BC & Director, ICAR- NBAIR,		
	Bengaluru		
10.25-10.35	Release of publications / Technologies/ Video films/ Dis	tribution of certificates	
10.35 -10.45	Address by Guest of Honour, Assistant Director	Dr. S. C. Dubey	
	General (PP&BS), ICAR, New Delhi		
10.45 -10.55	Address by Guest of Honour, Registrar, UAS, Bengalur	u Dr Basave Gowda	
10.55 -11.10	Inaugural address by Chief Guest, Deputy Director	Dr. T. R. Sharma	
	General (CS), ICAR, New Delhi		
11.10- 11.15	Vote of thanks by PC Cell Incharge, AICRP-BC, ICAR	- Dr. G. Sivakumar	
	NBAIR, Bengaluru		
11.15 - 11.30	High Tea		
	PRESENTATION OF PROGRESS REPORTS	S	
11.30 - 12.15	SESSION I: Panel discussion for collaboration between i	nstitutes and AICRPs	
Chair	Dr. T. R. Sharma, Deputy Director General (CS), ICAR,	New Delhi	
Co Chairs	Dr. S. C. Dubey, Assistant Director General (PP&BS),	ICAR, New Delhi	
	Dr. S. N. Sushil, Director, ICAR-NBAIR, Bengaluru		
Rapporteurs	Dr. A. Kandan, Principal Scientist, ICAR-NBAIR, Bengaluru		
	Dr.Omprakash Navik, Scientist, ICAR-NBAIR, Bengaluru		
	Speakers		
11.15-11.20	Dr.S.N.Sushil, Director, ICAR-NBAIR, Bengaluru		
11.20-11.25	Dr. Murali Bhaskar, Principal Scientist, ICAR-NIBSM	, Raipur	
11.25-11.30	Dr. Alok K. Srivastava, Director, ICAR- NBAIM, Mau		
11.30-11.35	Dr. Subash Chander, Director, ICAR-NCIPM, New Dell	hi	
11.35-11.40	Dr. A. S. Baloda, Network Coordinator, AINP on White grubs& Other Soil		
	Arthropods		
11.40-11.45	Dr.Vipin Chaudhary, Coordinator, AINP on Vertebrates	Pest management	
11.45-11.50	Dr. C. Chinnamade Gowda, Network Coordinator, AINP on Acarology		
11.50-11.55	Dr Meenakshi Sundram, Director, ICAR – IIRR, Hyderabad		
11.55-12.00	Dr. Y.G. Prasad, Director, ICAR-Central Institute for Cotton Research, Nagpur		
12.00-12.05	Dr Prakash Patil, Project Coordinator (Fruits), ICAR-IIHR, Bengaluru		
12.05-12.10	Dr. Ravi Bhat, Project Coordinator (Palms). ICAR-CPCRI, Kasaragod		
12.10-13.10	SESSION II: Basic research on biodiversity and natural	enemies of insect pests at	
	NBAIR and biological control of plant diseases		
Chair	Dr.Chandish. R. Ballal, Former Director, ICAR-NBAIR, Bengaluru		
Co – Chair	Dr.T.Venkatesan, Head (GR), ICAR-NBAIR, Bengaluru	1	
Rapporteurs	Dr. Deepa Bhagat, Pr. Scientist, ICAR-NBAIR, Bengalu	iru.	
	Dr. B. S. Gotyal, Sr. Scientist, ICAR-NBAIR, Bengalure	u	
12.15-12.20	Remark by chair Dr.Chai	ndish. R. Ballal	
12.20-12.25	Remark by Co-chair Dr.T.Ve	enkatesan	

12.25-12.40	Biodiversity, Biosystematics, Molecular Characterization and Biocontrol potential of bioagents (NBAIR works)		Dr.R.GandhiGracy, ICAR- NBAIR, Bengaluru	
12.40-12.55	Biodiversity and Pest Outbreak reports		Dr. M. Sampath Kumar, ICAR- NBAIR, Bengaluru	
12-55-13.10	Biological Control of Plant disea	ises	Dr.Raghunandan, AAU, Anand	
13.10-13.55		Lunch		
14.00-15.10	SESSION III: Biological suppres	ssion of pests o	of food and fibre	
Chair	Dr. Subash Chander, Director, IC	CAR-NCIPM,	New Delhi	
Co-Chair	Dr. Sunil Joshi, Head (DCC), IC	CAR-NBAIR,	Bengaluru	
Rapporteurs	Dr.M.Mohan, ICAR-NBAIR, Be Dr. B. L. Raghunandan, AAU, A	0		
14.00-14.05	Remark by chair	Dr. Subash C	Chander	
14.05-14.10	Remark by Co-chair	Dr. Sunil Jos	hi	
14.10-14.25	Rice	Dr. Chitra Sh	anker, ICAR-IIRR, Hyderabad	
14.25-14.35	Maize & Sorghum	Dr.Arunkuma	arHosamani, UAS, Raichur	
14.35-14-50	Sugarcane	Dr. P.S. Sher	a, PAU, Ludhiana	
14.50-15.00		Tea		
15.00-15.15	Cotton	Dr. G. Anitha	a, PJTSAU, Hyderabad	
15.15-15.30	Coconut	Dr. A. Joseph	n Rajkumar,CPCRI,Kayankulam	
15.40 - 16.30	SESSION IV: Biological suppres	ssion of pests of	of oil seeds and pulses	
Chair	Dr. H. C. Sharma, Former Vice C RAC, ICAR NBAIR, Bengaluru	Chancellor, YS	SPUHF, Nauni, HP & Chairman,	
Co-Chair	Dr.A.N.Shylesha, Head (DGCU)	, ICAR-NBAI	R, Bengaluru	
Rapporteurs	Dr. K. Selvaraj, ICAR-NBAIR, I Dr.Shyamal Sahoo, UBKV, Puno	U		
15.40-15.45	Remark by chair	Dr. H. C. S	Sharma	
15.45-15.50	Remark by Co-chair	Dr.A.N.Sh	ylesha	
15.50-16.10	Pulses Dr.M.Visalakshi, ANGRAU, Anakapalle			
16.10-16.30	Oil seeds Dr.Jeyarajan Nelson, TNAU, Coimbatore			
	Day 2 October 2	, 、	<i>,</i>	
9.30 - 10.40	SESSION V: Biological suppress crops	sion of pests o	f fruits, vegetables and polyhouse	
Chair		Dr. H. B. Singh, Head (Rtd), Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, BHU, Varanasi		
Co- Chair	Dr. Murali Bhaskar, Principal Scientist, ICAR- NIBSM, Raipur			
Rapporteurs	Dr. P. S. Shera, PAU, Ludhiana Dr. M. Sampath Kumar, ICAR-NBAIR, Bengaluru			
09.30-09.35	Remark by chair H. B. Singh			
09.35-09.40	Remark by Co-chairDr. Murali Bhaskar		i Bhaskar	
09.40-10.00	Tropical fruits	-	opa, ICAR-NBAIR, Bengaluru	
10.00-10.20	Temperate fruitsDr.S.C.Verma, DrYSPUHF, Solan			
10.20-10.40	Vegetables, Polyhouse crops & Flowers			
10.40-10.50	Tea			
10.50-13.00	SESSION VI: Technical program			
Chair	Dr. S.C. Dubey, ADG (PP&BS),	ICAR, New I	Delhi	

Co-chair	Dr.S.N.Sushil, Director	, ICAR-NBAIR, I	Bengaluru	
Rapporteurs	Dr. Jagadeesh Patil Sr. Scientist, ICAR-NBAIR, Bengaluru			
11	Dr.B.S.Gotyal Sr. Scientist, ICAR-NBAIR, Bengaluru			
	Presentation of technica		Dr. A. Joseph Rajkumar,	
	2022 to 20 25	1 0	ICAR- CPCRI, Kayankulum	
			Dr. Jagadeesh Patil,	
			ICAR-NBAIR, Bengaluru	
13.00-14.00		Lu	nch	
14.00 - 15.00	SESSION VII: Institute	e and industry into	eractions	
Chair	Dr. T.M. Manjunath,	Director (Rtd.), M	Iansanto Pvt Ltd, Bengaluru	
Co chair	Dr. M. Nagesh, Principa	al Scientist ICAR	- NBAIR, Bengaluru	
Rapporteurs	Dr. Ramya, Scientist,	ICAR-NBAIR, B	engaluru	
	Dr. Jaydeep Halder, St			
Panelists	Dr. H. C. Sharma, For	mer Vice Chance	llor, YSPUHF, Nauni, HP & Chairman,	
(14.00-14.20)	RAC, ICAR NBAIR, I	U		
	U	· ·	or, ICAR- NBAIR, Bengaluru	
	0,		ad , Plant Pathology, BHU, Varanasi	
	Dr.S.N.Sushil, Directo		0	
	Dr. S. J. Rahman, Pro			
Speakers		,	galuru (NBAIR biocontrol technologies)	
(14.20-15.00)	Representatives from I			
	Dr. S. K. Ghosh, Mult	-	-	
	·	Dr. Kumar S, Multiplex Biotech Head, Tumkuru		
15.00.15.00	Dr. Barkat Hussain Bhat, SKUAST, Srinagar			
15.00-15.20			Tea	
15.20 - 17.00	SESSION VIII: Valedic			
Chair			eral (CS), ICAR, New Delhi	
Co chair	Dr.S.N.Sushil, PC, AIC			
Rapporteur	Dr. Richa Varshney, IC		0	
15 20 15 20	Dr. K.T. Shivakumara,	, 0		
15.20-15.30	Presentation of		ndigeri, ICAR- NBAIR, Bengaluru	
15.30-15.40	recommendations by rapporteurs of each		ICAR- NBAIR, Bengaluru	
15.40-15.50	sessions		at, ICAR- NBAIR, Bengaluru	
15.50-16.00	505510115		ICAR- NBAIR, Bengaluru	
16.00-16.10	-	0.	ICAR-NBAIR, Bengaluru	
16.10-16.20	-	-	Kumar, ICAR-NBAIR, Bengaluru	
16.20-16.30	4		atil, ICAR- NBAIR, Bengaluru	
16.30-16.40	Dr.Ramya, ICAR- NBAIR, Bengaluru			
16.40-17.45	Remarks Dr. H. B. Singh, Head (Rtd), BHU, Varanasi			
16.45-16.50	Remarks		na, Vice Chancellor, YSPUHF, Solan, HP	
16.50-17.00	Remarks Dr. S. C. Dubey, Assistant Director General (PP&BS),			
17.00.17.15	ICAR, New Delhi			
17.00-17.15	5 1 5		a, Deputy Director General (CS), ICAR,	
17 15 17 00	New Delhi O Vote of Thanks Dr.A. N. Shylesha, Principal Scientist, ICAR- NB			
	Vote of Thanks	LDr.A. N. Shvles	na. Principal Scientist, ICAR- NBAIR	
17.1517.30		Bengaluru	ing, i interput serentist, i er nit i (Brinit,	

LIST OF PARTICIPANTS

Indian Council of Agricultural Research, New Delhi

Dr. T. R. Sharma, DDG (CS), ICAR, New Delhi

Dr. S. C. Dubey, ADG (PP&B), ICAR, New Delhi

Experts : Special External Invitees

Dr. H. C. Sharma, Former Vice Chancellor, Dr YS Parmar University of Horticulture and

Forestry, Nauni, Himachal Pradesh and Chairman, RAC, ICAR NBAIR, Bengaluru

Dr. H. B. Singh, Professor (Pl.Path.) Faculty of Agriculture, BHU, Varanasi

Dr. T. M. Manjunath, Former Director, Mansanto Research Centre, Bengaluru

Dr.N.K. Krishnakumar, Former DDG(H)& Director, ICAR NBAIR, Bengaluru

Dr. Abraham Verghese, Former Director, ICAR-NBAIR. Bengaluru

Dr. Chandish R. Ballal, Former Director, ICAR-NBAIR. Bengaluru

Dr. M. Mani, Rtd Pr. Scientist, ICAR-IIHR, Bengaluru

Dr. N. Bakthavatsalam, Former Director, ICAR-NBAIR. Bengaluru

Dr. Y. G. Prasad, Director, CICR, Cotton

Dr. Subash Chander, Director, NCIPM, New Delhi

Dr. S. J. Rahman, Professor, ANGRAU, Hyderabad

Dr. Murali Bhaskar, Pr. Scientist, ICAR-NIBSM, Raipur

Dr. Alok K. Srivastava, Director, ICAR- NBAIM, Mau

Dr. A. S. Baloda, Network Coordinator, AINP on White grubs & amp; Other Soil Arthropods

Dr. Vipin Chaudhary, Coordinator, AINP on Vertebrates Pest management

Dr. C. Chinnamade Gowda, Network Coordinator, AINP on Acarology

Dr. Y.G. Prasad, Director, ICAR-Central Institute for Cotton Research, Nagpur

Dr Prakash Patil, Project Coordinator (Fruits), ICAR-IIHR, Bengaluru

Dr. Ravi Bhat, Project Coordinator (Palms). ICAR-CPCRI, Kasaragod

Dr. Meenakshi Sundram, Director, ICAR - IIRR, Hyderabad

National Bureau of Agricultural Insect Resources (NBAIR), Bengaluru

Dr. M. Nagesh, Pr. Scientist

Dr. A.N.Shylesha, Pr. Scientist & HOD (GCU)

Dr. Sunil Joshi, Pr. Scientist & HOD (GC& C)

Dr.T. Venkatesan, Pr. Scientist &HOD (GR)

Dr. R. Rangeswaran, Pr.Scientist (Micro.)

Dr.T.M.Shivalingaswamy, Pr.Scientist (Ento)

Dr. G. Sivakumar, Principal Scientist (Micro.)

Dr. K.Subaharan, Principal Scientist (Ento)

Dr. Deepa Bhagat, Pr. Scientist (Organic Chemistry)

Dr. M. Mohan, Principal Scientist (Ento.)

Dr. A. Kandan, Principal Scientist (Pl.Path.)

Dr. K. Sreedevi, Principal Scientist (Ento.)

Dr. MaheshYandigeri, Principal Scientist (Micro)

Dr. Jagadeesh Patil, Scientist (Nematology)

- Dr. Sampath Kumar, Scientist (Ento.)
- Dr. K. Selvaraj, Scientist (Ento.)

Dr. Amala Udayakumar, Scientist (Ento.)

- Dr. Richa Varshney, Scientist (Ento)
- Dr. Omprakash Navik, Scientist (Ento.)

Dr. Ramya, Scientist (Ento.)

Dr. C. Manjunatha, Scientist (Pl. Path.)

Dr. Shivakumara K T (Ento)

Ms. L. Lakshmi, Technical officer

Mr. Jayaram, Technical officer

Mr. P. Raveendran, Technical officer

Dr. Raghavendra, Technical officer

Mr. K.M. Venugopala, Technical Asistant

Mr. R. Maruthi Mehanth, Technical Asistant

Mr. Ramakrishnaiah, Technical Asistant

Dr. Lalitha, Technical Oficer (Rtd)

Sl.No	Centres	Name of the Scientist/s			
	Regular Centres				
1	AAU, Anand	Dr. Nainesh B. Patel (PI)			
		Dr. B. L. Raghunandan			
2	AAU, Jorhat	Dr. AnjumoniDevee (PI)			
3	ANGRAU, Anakapalle	Dr. M. Visalakshi (PI)			
4	GBPUAT, Pantnagar	Dr. Roopali Sharma (PI)			
		Dr.Bhupesh			
5	KAU, Thrissur	Dr. Smitha R			
6	MPKV, Pune	Dr. B. A. Bade (PI)			
		Dr.N.D.Tamboli			
7	PAU, Ludhiana	Dr.Kamaldeep Singh Sangha (PI)			
		Dr. Neelam Joshi			
		Dr. P. S. Shera			
8	PJTSAU, Hyderabad	Dr. G. Anitha (PI)			
9	SKUAST, Srinagar	Dr. Barkat Hussain Bhat (PI)			
10	TNAU, Coimbatore	Dr. Jeyarajan Nelson (PI)			
11	YSPUHF, Solan	Dr. S. C. Verma (PI)			
	Contingency C	Centres			
12	UAS, Raichur	Dr. ArunkumarHosamani (PI)			
13	ICAR-CPCRI,	Dr. Joseph Rajkumar (PI)			
	Kayangulam	Dr. K. M. Anes			
14	ICAR-IIHR, Bangalore	Dr. B. R. Jayanthi Mala (PI)			
15	ICAR-IIMR,	Dr. Rajesha			
	Hyderabad(Millets)	Dr. Stanley			
17	ICAR-IIRR,	Dr. Chitra Shanker (PI)			
	Hyderabad				

18	ICAR-NCIPM,New	Dr. Anoop Kumar (PI)
	Delhi	
19	DRYSRUH, Ambajapeta	Dr. N. B. V. Chalapathi Rao (PI)
		Mrs. B. Neeraja
20	IGKV, Raipur	Dr. Jayalakshmi Ganguli (PI)
21	KAU, Kumarakom	Dr. M.K.Dhanya (PI)
22	KAU, Vellayani	Dr. RejiRani,O. P (PI)
	Voluntary Ce	
23	PDKV, Akola	Dr. D. B. Undirwade (PI)
24	SKUAST - Jammu	Dr. Reena (PI)
25	UHAS, Shivamogga, Karnataka	Dr. S. Pradeep
26	DRYSRUH, Tirupati	Dr. Srinivasa Reddy (PI)
27	ICAR-SBI,	Dr. N. Geetha (PI)
	Coimbatore	Dr. P. Malathi
28	WNC-ICAR-IIMR,	Dr. J. C. Sekhar (PI)
	Hyderabad	
29	NIPHM, Hyderabad	Ms. N. Lavanya (PI)
		Dr. S. Jesu Rajan
30	College of Agriculture, Lembucherra,	Dr. Navendunair (PI)
	Agartala, Tripura	
31	ICAR-NRRI, Cuttack	Mr. Annamalai M (PI)
		Dr. S. R. Prabhukarthikeyan
32	Manufacturers of Biocontrol	Dr. S. K. Ghosh, Multiplex Biotech Pvt
	Agents/Biopesticides	ltd, Bengaluru
		Mr. S. Kumar, Multiplex Biotech Pvt ltd,
		Tumkuru

ACRONYMS

ACKONTRI	
AAU-A	Anand Agricultural University, Anand
AAU-J	Assam Agricultural University, Jorhat
ANGRAU	Acharya N.G. Ranga Agricultural University, Anakapalle
GBPUAT	Gobind Ballabh Pant University of Agriculture and Technology, Pantnagar
KAU	Kerala Agricultural University, Thrissur
MPKV	Mahatma Phule Krishi Vidyapeeth, Pune
PAU	Punjab Agricultural University, Ludhiana
PJTSAU	Pandit Jayashankar Telangana State Agricultural University, Hyderabad
SKUAST	Sher-e-Kashmir University of Agricultural Science & Technology, Srinagar
TNAU	Tamil Nadu Agricultural University, Coimbatore
YSPUHF	Y.S. Parmar University of Horticultural and Forestry, Solan
CAU	Central Agricultural University, Pasighat
MPUAT	Maharana Pratap University of Agriculture & Technology, Udaipur
OUAT	Orissa University of Agriculture & Technology, Bhubaneswar
UAS-R	University of Agricultural Sciences, Raichur
IGKV	Indira Gandhi Krishi Viswavidhyalaya, Raipur
KAU	RARS KAU-Regional Agricultural Research Station, Kumarakom
KAU	RARS KAU-Regional Agricultural Research Station, Vellayani
YSRUH	Dr. Y S R Horticultural University, Ambajipeta
UBKV	Uttar Banga Krishi Vishwavidyalaya, Pundibari, West Bengal
CISH	Central Institute of Subtropical Horticulture, Lucknow
CPCRI	Central Plantation Crops Research Institute, Kayamkulam
CTRI	Central Tobacco Research Institute, Rajahmundry
IIHR	Indian Institute of Horticultural Research, Bengaluru
IIRR	Indian Institute of Rice Research, Hyderabad
IIMR	Indian Institute of Millet Research, Hyderabad
IIVR	Indian Institute of Vegetable Research, Varanasi
NCIPM	National Centre for Integrated Pest Management, New Delhi